1,227
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

Article: 32221 | Received 10 May 2016, Accepted 29 Jul 2016, Published online: 23 Aug 2016

References

  • Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, etal. Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007; 115: e69–171.
  • Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation. 2003; 107: 346–54.
  • Yan L, Vatner DE, O'Connor JP, Ivessa A, Ge H, Chen W, etal. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell. 2007; 130: 247–58.
  • Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, etal. Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol. 2002; 283: H1750–60.
  • Pol CJ, Lieu M, Drosatos K. PPARS: protectors or opponents of myocardial function?. PPAR Res. 2015; 2015: 19.
  • Zhao L, Zou X, Feng Z, Luo C, Liu J, Li H, etal. Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats. Exp Gerontol. 2014; 56: 3–12.
  • van der Meer RW, Rijzewijk LJ, Diamant M, Hammer S, Schar M, Bax JJ, etal. The ageing male heart: myocardial triglyceride content as independent predictor of diastolic function. Eur Heart J. 2008; 29: 1516–22.
  • Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, etal. Systolic and diastolic heart failure in the community. JAMA. 2006; 296: 2209–16.
  • Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, etal. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009; 119: 2789–97.
  • Schefer V, Talan MI. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol. 1996; 31: 387–92.
  • Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF, Martin GM, etal. Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci. 2008; 63: 813–22.
  • Boyle AJ, Shih H, Hwang J, Ye J, Lee B, Zhang Y, etal. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol. 2011; 46: 549–59.
  • Chen W, Frangogiannis NG. The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Fail Rev. 2010; 15: 415–22.
  • Frangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol Rev. 2012; 92: 635–88.
  • Swindell WR. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics. 2009; 10: 585.
  • Park SK, Kim K, Page GP, Allison DB, Weindruch R, Prolla TA. Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell. 2009; 8: 484–95.
  • Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990; 67: 871–85.
  • Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging – matters of the heart and mind. Int J Mol Sci. 2013; 14: 17897–925.
  • Isoyama S, Nitta-Komatsubara Y. Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev. 2002; 7: 63–9.
  • Mariani J, Ou R, Bailey M, Rowland M, Nagley P, Rosenfeldt F, etal. Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg. 2000; 120: 660–7.
  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, etal. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005; 308: 1909–11.
  • Juhaszova M, Rabuel C, Zorov DB, Lakatta EG, Sollott SJ. Protection in the aged heart: preventing the heart-break of old age?. Cardiovasc Res. 2005; 66: 233–44.
  • Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res. 2006; 70: 191–9.
  • Vagnozzi RJ, Hoffman NE, Elrod JW, Madesh M, Force T. Protein kinase signaling at the crossroads of myocyte life and death in ischemic heart disease. Drug Discov Today Ther Strateg. 2012; 9: e173–82.
  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010; 90: 207–58.
  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85: 1093–129.
  • Kates AM, Herrero P, Dence C, Soto P, Srinivasan M, Delano DG, etal. Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol. 2003; 41: 293–9.
  • Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012; 15: 805–12.
  • Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep. 2013; 10: 109–21.
  • Bosma M, Dapito DH, Drosatos-Tampakaki Z, Huiping-Son N, Huang LS, Kersten S, etal. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim Biophys Acta. 2014; 1841: 1648–55.
  • Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr., Ory DS, etal. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003; 100: 3077–82.
  • Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S, etal. PPARgamma-induced cardiolipotoxicity in mice is ameliorated by PPARalpha deficiency despite increases in fatty acid oxidation. J Clin Invest. 2010; 120: 3443–54.
  • Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, etal. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem. 2009; 284: 36312–23.
  • Drosatos K, Bharadwaj KG, Lymperopoulos A, Ikeda S, Khan R, Hu Y, etal. Cardiomyocyte lipids impair beta-adrenergic receptor function via PKC activation. Am J Physiol Endocrinol Metab. 2011; 300: E489–99.
  • Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, etal. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012; 125: 2844–53.
  • Koonen DP, Febbraio M, Bonnet S, Nagendran J, Young ME, Michelakis ED, etal. CD36 expression contributes to age-induced cardiomyopathy in mice. Circulation. 2007; 116: 2139–47.
  • Wang X, West JA, Murray AJ, Griffin JL. Comprehensive metabolic profiling of age-related mitochondrial dysfunction in the high-fat-fed ob/ob mouse heart. J Proteome Res. 2015; 14: 2849–62.
  • Rodriguez-Calvo R, Serrano L, Barroso E, Coll T, Palomer X, Camins A, etal. Peroxisome proliferator-activated receptor alpha down-regulation is associated with enhanced ceramide levels in age-associated cardiac hypertrophy. J Gerontol A Biol Sci Med Sci. 2007; 62: 1326–36.
  • Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev. 2008; 88: 1341–78.
  • Hunter JC, Korzick DH. Age- and sex-dependent alterations in protein kinase C (PKC) and extracellular regulated kinase 1/2 (ERK1/2) in rat myocardium. Mech Ageing Dev. 2005; 126: 535–50.
  • Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, etal. Increased protein kinase C activity and expression of Ca2+− sensitive isoforms in the failing human heart. Circulation. 1999; 99: 384–91.
  • Boyle AJ, Kelly DJ, Zhang Y, Cox AJ, Gow RM, Way K, etal. Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction. J Mol Cell Cardiol. 2005; 39: 213–21.
  • Braz JC, Bueno OF, De Windt LJ, Molkentin JD. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase1/2 (ERK1/2). J Cell Biol. 2002; 156: 905–19.
  • Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, etal. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004; 10: 248–54.
  • Connelly KA, Kelly DJ, Zhang Y, Prior DL, Advani A, Cox AJ, etal. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail. 2009; 2: 129–37.
  • Rouet-Benzineb P, Mohammadi K, Perennec J, Poyard M, Bouanani Nel H, Crozatier B. Protein kinase C isoform expression in normal and failing rabbit hearts. Circ Res. 1996; 79: 153–61.
  • Kohout TA, Rogers TB. Use of a PCR-based method to characterize protein kinase C isoform expression in cardiac cells. Am J Physiol. 1993; 264: C1350–9.
  • Shin HG, Barnett JV, Chang P, Reddy S, Drinkwater DC, Pierson RN, etal. Molecular heterogeneity of protein kinase C expression in human ventricle. Cardiovasc Res. 2000; 48: 285–99.
  • Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol. 2008; 44: 968–75.
  • Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, van de Weijer T, etal. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med. 2011; 17: 1076–85.
  • Lahey R, Wang X, Carley AN, Lewandowski ED. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation. 2014; 130(20): 1790–9.
  • Djouadi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J, Gonzalez FJ, etal. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J Clin Invest. 1998; 102: 1083–91.
  • Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, etal. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age- dependent cardiac toxicity. J Biol Chem. 2000; 275: 22293–9.
  • Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD, etal. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem. 2002; 277: 4098–103.
  • Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation. 2005; 112: 2339–46.
  • Liu J, Wang P, He L, Li Y, Luo J, Cheng L, etal. Cardiomyocyte-restricted deletion of PPARbeta/delta in PPARalpha-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of myocardial fatty acid oxidation. PPAR Res. 2011; 2011: 372854.
  • Loichot C, Jesel L, Tesse A, Tabernero A, Schoonjans K, Roul G, etal. Deletion of peroxisome proliferator-activated receptor-alpha induces an alteration of cardiac functions. Am J Physiol Heart Circ Physiol. 2006; 291: H161–6.
  • Guellich A, Damy T, Lecarpentier Y, Conti M, Claes V, Samuel JL, etal. Role of oxidative stress in cardiac dysfunction of PPARalpha−/− mice. Am J Physiol Heart Circ Physiol. 2007; 293: H93–102.
  • Guellich A, Damy T, Conti M, Claes V, Samuel JL, Pineau T, etal. Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-alpha KO mouse. Am J Physiol Heart Circ Physiol. 2013; 304: H1505–12.
  • Howroyd P, Swanson C, Dunn C, Cattley RC, Corton JC. Decreased longevity and enhancement of age-dependent lesions in mice lacking the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Toxicol Pathol. 2004; 32: 591–9.
  • Poynter ME, Daynes RA. Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem. 1998; 273: 32833–41.
  • Atherton HJ, Gulston MK, Bailey NJ, Cheng KK, Zhang W, Clarke K, etal. Metabolomics of the interaction between PPAR-alpha and age in the PPAR-alpha-null mouse. Mol Syst Biol. 2009; 5: 259.
  • Han L, Li M, Liu Y, Han C, Ye P. Atorvastatin may delay cardiac aging by upregulating peroxisome proliferator-activated receptors in rats. Pharmacology. 2012; 89: 74–82.
  • Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol. 2002; 2: 748–59.
  • Youssef J, Badr M. Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol. 2004; 2004: 156–66.
  • Son NH, Ananthakrishnan R, Yu S, Khan RS, Jiang H, Ji R, etal. Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia. PLoS One. 2012; 7: e46549.
  • Thiagarajan D, Ananthakrishnan R, Zhang J, O'Shea KM, Quadri N, Li Q, etal. Aldose reductase acts as a selective derepressor of PPARgamma and the retinoic acid receptor. Cell Rep. 2016; 15: 181–96.
  • Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem. 1993; 268: 23735–8.
  • Chuang TT, LeVine H 3rd , De Blasi A. Phosphorylation and activation of beta-adrenergic receptor kinase by protein kinase C. J Biol Chem. 1995; 270: 18660–5.
  • Leineweber K, Klapproth S, Beilfuss A, Silber RE, Heusch G, Philipp T, etal. Unchanged G-protein-coupled receptor kinase activity in the aging human heart. J Am Coll Cardiol. 2003; 42: 1487–92.
  • Sibley DR, Lefkowitz RJ. Beta-adrenergic receptor-coupled adenylate cyclase. Biochemical mechanisms of regulation. Mol Neurobiol. 1987; 1: 121–54.
  • Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ. The role of sequestration in G protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem. 1997; 272: 5–8.
  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001; 294: 1307–13.
  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, etal. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982; 307: 205–11.
  • Christou DD, Seals DR. Decreased maximal heart rate with aging is related to reduced {beta}-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J Appl Physiol. 2008; 105: 24–9.
  • Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, etal. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008; 49: 2101–12.
  • Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN, etal. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol. 2006; 291: H38–44.
  • Sample J, Cleland JG, Seymour AM. Metabolic remodeling in the aging heart. J Mol Cell Cardiol. 2006; 40: 56–63.
  • Lemieux H, Vazquez EJ, Fujioka H, Hoppel CL. Decrease in mitochondrial function in rat cardiac permeabilized fibers correlates with the aging phenotype. J Gerontol A Biol Sci Med Sci. 2010; 65: 1157–64.
  • Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys. 1999; 372: 399–407.
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956; 11: 298–300.
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005; 120: 483–95.
  • Tatarkova Z, Kuka S, Racay P, Lehotsky J, Dobrota D, Mistuna D, etal. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol Res. 2011; 60: 281–9.
  • Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007; 292: C670–86.
  • Kuka S, Tatarkova Z, Racay P, Lehotsky J, Dobrota D, Kaplan P. Effect of aging on formation of reactive oxygen species by mitochondria of rat heart. Gen Physiol Biophys. 2013; 32: 415–20.
  • Dai DF, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med. 2009; 19: 213–20.
  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, etal. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309: 481–4.
  • Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008; 65: 2493–506.
  • Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decline in the cytochrome C oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett. 1997; 406: 136–8.
  • Paradies G, Petrosillo G, Ruggiero FM. Cardiolipin-dependent decrease of cytochrome C oxidase activity in heart mitochondria from hypothyroid rats. Biochim Biophys Acta. 1997; 1319: 5–8.
  • Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decrease in the cytochrome C oxidase activity and changes in phospholipids in rat-heart mitochondria. Arch Gerontol Geriatr. 1993; 16: 263–72.
  • Moghaddas S, Stoll MS, Minkler PE, Salomon RG, Hoppel CL, Lesnefsky EJ. Preservation of cardiolipin content during aging in rat heart interfibrillar mitochondria. J Gerontol A Biol Sci Med Sci. 2002; 57: B22–8.
  • Lesnefsky EJ, Hoppel CL. Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biochim Biophys Acta. 2008; 1777: 1020–7.
  • Lesnefsky EJ, Minkler P, Hoppel CL. Enhanced modification of cardiolipin during ischemia in the aged heart. J Mol Cell Cardiol. 2009; 46: 1008–15.
  • Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett. 1998; 424: 155–8.
  • Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007; 292: C33–44.
  • Mohamed SA, Hanke T, Erasmi AW, Bechtel MJ, Scharfschwerdt M, Meissner C, etal. Mitochondrial DNA deletions and the aging heart. Exp Gerontol. 2006; 41: 508–17.
  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, etal. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004; 429: 417–23.
  • Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA. 1991; 266: 1812–16.
  • Zhang C, Bills M, Quigley A, Maxwell RJ, Linnane AW, Nagley P. Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: a comparison between human and rat. Biochem Biophys Res Commun. 1997; 230: 630–5.