777
Views
1
CrossRef citations to date
0
Altmetric
Thematic cluster. Oslo Science Conference, 8-12 June 2010: selected IPY papers

Some like it cold: microbial transformations of mercury in polar regions

, &
Article: 15469 | Published online: 28 Dec 2011

References

  • Alfreider A. Pernthaler J. Amann R. Sattler B. Glockner F.O. Wille A. Psenner R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Applied and Environmental Microbiology. 1996; 62: 2138–2144.
  • Amato P. Hennebelle R. Magand O. Sancelme M. Delort A.M. Barbante C. Boutron C. Ferrari C. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology. 2007; 59: 255–264.
  • Amyot M. Southworth G. Lindberg S.E. Hintelmann H. Lalonde J.D. Ogrinc N. Poulain A.J. Sandilands K.A. Formation and evasion of dissolved gaseous mercury in large enclosures amended with (HgCl2)-Hg-200. Atmospheric Environment. 2004; 38: 4279–4289.
  • Andersson M.E. Sommar J. Gardfeldt K. Lindqvist O. Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Marine Chemistry. 2008; 110: 190–194.
  • Ariya P.A. Skov H. Grage M.L. Goodsite M.E. Gaseous elemental mercury in the ambient atmosphere: review of the application of theoretical calculations and experimental studies for determination of reaction coefficients and mechanisms with halogens and other reactants. Advances in Quantum Chemistry. 2008; 55: 43–54.
  • Barkay T. Adaptation of aquatic microbial communities to Hg2+ stress. Applied and Environmental Microbiology. 1987; 53: 2725–2732.
  • Barkay T. Gillman M. Turner R.R. Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology. 1997; 63: 4267–4271.
  • Barkay T. Kritee K. Boyd E. Geesey G. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environmental Microbiology. 2010; 12: 2904–2917.
  • Barkay T. Miller S.M. Summers A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews. 2003; 27: 355–384.
  • Barkay T. Schaefer J.K. Poulain A.J. Amyot M. Microbial transformations in the mercury geochemical cycle. Geochimica et Cosmochimica Acta. 2005; 69: A702–A702.
  • Basu N. Scheuhammer A.M. Sonne C. Letcher R.J. Born E.W. Dietz R. Is dietary mercury of neurotoxicological concern to wild polar bears (Ursus maritimus)?. Environmental Toxicology and Chemistry. 2009; 28: 133–140.
  • Ben-Bassat D. Mayer A.M. Light induced Hg volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine. Physiologia Plantarum. 1978; 42: 33–38.
  • Bentley R. Chasteen T.G. Environmental VOSCs—formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere. 2004; 55: 291–317.
  • Berestovskaya Y.Y. Rusanov I.I. Vasil'eva L.V. Pimenov N.V. The processes of methane production and oxidation in the soils of the Russian Arctic tundra. Microbiology. 2005; 74: 221–229.
  • Bergquist B.A. Blum J.D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science. 2007; 318: 417–420.
  • Bowman J.S. & Deming J.W. 2010. Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and microbial dispersal. Geophysical Research Letters. 37, L13501., 10.3402/polar.v30i0.15469.
  • Braun W. Herron J.T. Kahaner D.K. Acuchem: a computer-program for modeling complex chemical-reaction systems. International Journal of Chemical Kinetics. 1988; 20: 51–62.
  • Brooks S, Saiz-Lopez A, Skov H, Lindberg S, Plane J.M.C. & Goodsite M.E. 2006. The mass balance of mercury in the springtime Arctic environment. Geophysical Research Letters. 33, L13812., 10.3402/polar.v30i0.15469.
  • Brown N.L. Stoyanov J.V. Kidd S.P. Hobman J.L. The MerR family of transcriptional regulators. FEMS Microbiology Reviews. 2003; 27: 145–163.
  • Bruchert V. Knoblauch C. Jørgensen B.B. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments. Geochimica et Cosmochemica Acta. 2001; 65: 763–776.
  • Butler Walker J. Houseman J. Seddon L. McMullen E. Tofflemire K. Mills C. Corriveau A. Weber J.P. LeBlanc A. Walker M. Donaldson S.G. Van Oostdam J. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environmental Research. 2006; 100: 295–318.
  • Calace N. Cantafora E. Mirante S. Petronio B.M. Pietroletti M. Transport and modification of humic substances present in Antarctic snow and ancient ice. Jounral of Environmental Monitoring. 2005; 7: 1320–1325.
  • Campbell L.M. Norstrom R.J. Hobson K.A. Muir D.C.G. Backus S. Fisk A.T. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Science of the Total Environment. 2005; 351: 247–263.
  • Carpenter E.J. Lin S.J. Capone D.G. Bacterial activity in South Pole snow. Applied and Environmental Microbiology. 2000; 66: 4514–4517.
  • Choi S.C. Chase T. Bartha R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology. 1994; 60: 4072–4077.
  • Clarkson T.W. The three modern faces of mercury. Environmental Health Perspectives. 2002; 110(Supplement 1): 11–23.
  • Collins R.E. Rocap G. Deming J.W. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environmental Microbiology. 2010; 12: 1828–1841.
  • Compeau G.C. Bartha R. Sulfate-reducing bacteria: principle methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology. 1985; 50: 498–502.
  • Connell L. Redman R. Craig S. Scorzetti G. Iszard M. Rodriguez R. Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microbial Ecology. 2008; 56: 448–459.
  • Constant P. Poissant L. Villemur R. Yumvihoze E. Lean D. Fate of inorganic mercury and methyl mercury within the snow cover in the Low Arctic tundra on the shore of Hudson Bay (Québec, Canada). Journal of Geophysical Research—Atmospheres. 2007; 112: D08309.
  • Cossa D. Averty B. Pirrone N. The origin of methylmercury in open Mediterranean waters. Limnology and Oceanography. 2009; 54: 837–844.
  • Crespo-Medina M. Chatziefthimiou A.D. Bloom N.S. Luther G.W. III, Reinfelder J.R. Vetriani C. Barkay T. Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnology & Oceanography. 2009; 54: 41–49.
  • Davidson E.A. Janssens I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006; 440: 165–173.
  • De Souza M.J. Nair S. Bharathi P.A.L. Chandramohan D. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology. 2006; 15: 379–384.
  • Deming J.W. Psychrophiles and polar regions. Current Opinion in Microbiology. 2002; 5: 301–309.
  • Dietz R. Outridge P.M. Hobson K.A. Anthropogenic contributions to mercury levels in present-day Arctic animals—a review. Science of the Total Environment. 2009; 407: 6120–6131.
  • Dommergue A. Ferrari C.P. Poissant L. Gauchard P.A. Boutron C.F. Diurnal cycles of gaseous mercury within the snowpack at Kuujjuarapik/Whapmagoostui, Quebec, Canada. Environmental Science & Technology. 2003; 37: 3289–3297.
  • Dommergue A. Sprovieri F. Pirrone N. Ebinghaus R. Brooks S. Courteaud J. Ferrari C.P. Overview of mercury measurements in the Antarctic troposphere. Atmospheric Chemistry and Physics. 2010; 10: 3309–3319.
  • Donaldson S.G. van Oostdam J. Tikhonov C. Feeley M. Armstrong B. Ayotte P. Boucher O. Bowers W. Chan L. Dallaire F. Dallaire R. Dewailly E. Edwards J. Egeland G.M. Fontaine J. Furgal C. Leech T. Loring E. Muckle G. Nancarrow T. Pereg D. Plusquellec P. Potyrala M. Receveur O. Shearer R.G. Environmental contaminants and human health in the Canadian Arctic. Science of the Total Environment. 2010; 408: 5165–5234.
  • Douglas T.A. Sturm M. Simpson W.R. Blum J.D. Alvarez-Aviles L. Keeler G.J. Perovich D.K. Biswas A. Johnson K. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environmental Science & Technology. 2008; 42: 1542–1551.
  • Douglas T.A, Sturm M, Simpson W.R, Brooks S, Lindberg S.E. & Perovich D.K. 2005. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophysical Research Letters. 32, L04502., 10.3402/polar.v30i0.15469.
  • Durnford D. Dastoor A. Figueras-Nieto D. Ryjkov A. Long range transport of mercury to the Arctic and across Canada. Atmospheric Chemistry and Physics. 2010; 10: 6063–6086.
  • Ebinghaus R. Kock H.H. Temme C. Einax J.W. Lowe A.G. Richter A. Burrows J.P. Schroeder W.H. Antarctic springtime depletion of atmospheric mercury. Environmental Science & Technology. 2002; 36: 1238–1244.
  • Eicken H. From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. Sea ice: an introduction to its physics, chemistry, biology and geology. Thomas D.N. Dickmann G.S. Blackwell Science. Oxford, 2003; 22–81.
  • Ekstrom E.B. Morel F.M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Environmental Science & Technology. 2008; 42: 93–99.
  • Ekstrom E.B. Morel F.M. Benoit J.M. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria. Applied and Environmental Microbiology. 2003; 69: 5414–5422.
  • Finke N. Vandieken V. Jorgensen B.B. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology. 2007; 59: 10–22.
  • Fitzgerald W.F. Lamborg C.H. Hammerschmidt C.R. Marine biogeochemical cycling of mercury. Chemical Reviews. 2007; 107: 641–662.
  • Fitzgerald W.F. Mason R. Vandal G.M. Atmospheric cycling and air–water exchange of mercury over mid-continental lacusterine regions. Water, Air, and Soil Pollution. 1991; 56: 745–767.
  • Fleming E.J. Mack E.E. Green P.G. Nelson D.C. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology. 2006; 72: 457–464.
  • Galand P.E. Casamayor E.O. Kirchman D.L. Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106: 22427–22432.
  • Galand P.E. Lovejoy C. Pouliot J. Garneau M.-E. Vincent W.F. Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnology and Oceanography. 2008; 53: 813–823.
  • Garcia E. Amyot M. Ariya P.A. Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands. Geochimica et Cosmochimica Acta. 2005; 69: 1917–1924.
  • Garcia E. Poulain A.J. Amyot M. Ariya P.A. Diel variations in photoinduced oxidation of Hg(0) in freshwater. Chemosphere. 2005; 59: 977–981.
  • Gilmour C.C. Henry E.A. Mitchell R. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology. 1992; 26: 2281–2287.
  • Golding G.R. Kelly C.A. Sparling R. Loewen P.C. Rudd J.W.M. Barkay T. Evidence for facilitated uptake of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limonology and Oceanography. 2002; 47: 967–975.
  • Gray J.E. Hines M.E. Higueras P.L. Adatto I. Lasorsa B.K. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain. Environmental Science & Technology. 2004; 38: 4285–4292.
  • Hammerschmidt C.R. Fitzgerald W.F. Photodecomposition of methylmercury in an Arctic Alaskan lake. Environmental Science & Technology. 2006; 40: 1212–1216.
  • Hammerschmidt C.R. Fitzgerald W.F. Lamborg C.H. Balcom P.H. Tseng C.M. Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska. Environmental Science & Technology. 2006; 40: 1204–1211.
  • Hayashi K. Kawai S. Ohno T. Maki Y. Photomethylation of inorganic mercury by aliphatic α-amino-acids. Journal of the Chemical Society, Chemical Communications. 1977; 5: 158–159.
  • Heimann M. Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008; 451: 289–292.
  • Hines M.E. Crill P.M. Varner R.K. Talbot R.W. Shorter J.H. Kolb C.E. Harriss R.C. Rapid consumption of low concentrations of methyl bromide by soil bacteria. Applied and Environmental Microbiology. 1998; 64: 1864–1870.
  • Hines M.E. Duddleston K.N. Carbon flow to acetate and C1 compounds in northern wetlands. Geophysical Research Letters. 2001; 28: 4251–4254.
  • Hines M.E. Horvat M. Faganeli J. Bonzongo J.C.J. Barkay T. Major E.B. Scott K.J. Bailey E.A. Warwick J.J. Lyons W.B. Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste. Environmental Research. 2000; 83: 129–139.
  • Jensen S. Jernelöv A. Biological methylation of mercury in aquatic organisms. Nature. 1969; 223: 753–754.
  • Johansen P. Mulvad G. Pedersen H.S. Hansen J.C. Riget F. Human accumulation of mercury in Greenland. Science of the Total Environment. 2007; 377: 173–178.
  • Junge K. Eicken H. Deming J.W. Bacterial activity at −2 to −20 °C in Arctic wintertime sea ice. Applied and Environmental Microbiology. 2004; 70: 550–557.
  • Kawamura K. Yanase A. Eguchi T. Mikami T. Barrie L.A. Enhanced atmospheric transport of soil derived organic matter in spring over the High Arctic. Geophysical Research Letters. 1996; 23: 3735–3738.
  • Kelly C.A. Rudd J.W.M. Bodaly R.A. Roulet N.P. St. Louis V.L. Heyes A. Moore T.R. Schiff S. Aravena R. Scott K.J. Dyck B. Harris R. Warner B. Edwards G. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Enviornmental Science & Technology. 1997; 31: 1334–1344.
  • Kelly C.A. Rudd J.W. Holoka M.H. Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Enviornmental Science & Technology. 2003; 37: 2941–2946.
  • Kerin E.J. Gilmour C.C. Roden E. Suzuki M.T. Coates J.D. Mason R.P. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology. 2006; 72: 7919–7921.
  • King J.K. Kostka J.E. Frischer M.E. Saunders F.M. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Applied and Environmental Microbiology. 2000; 66: 2430–2437.
  • Kirchman D.L. Elifantz H. Dittel A.I. Malmstrom R.R. Cottrell M.T. Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnology and Oceanography. 2007; 52: 495–507.
  • Kirk J.L. St. Louis V.L. Hintelmann H. Lehnherr I. Else B. Poissant L. Methylated mercury species in marine waters of the Canadian High and sub Arctic. Environmental Science & Technology. 2008; 42: 8367–8373.
  • Klaminder J, Yoo K, Rydberg J. & Giesler R. 2008. An explorative study of mercury export from a thawing palsa mire. Journal of Geophysical Research—Biogeosciences. 113, G04034., 10.3402/polar.v30i0.15469.
  • Knoblauch C. Jorgensen B.B. Harder J. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Applied and Environmental Microbiology. 1999; 65: 4230–4233.
  • Koh E.Y. Atamna-Ismaeel N. Martin A. Cowie R.O. Beja O. Davy S.K. Maas E.W. Ryan K.G. Proteorhodopsin-bearing bacteria in Antarctic sea ice. Applied and Environmental Microbiology. 2010; 76: 5918–5925.
  • Krabbenhoft D.P. Hurley J.P. Olson M.L. Cleckner L.B. Diel variability of mercury phase and species distributions in the Florida Everglades. Biogeochemistry. 1998; 40: 311–325.
  • Krembs C. Deming J. The role of exoplymers in microbial adaptation to sea ice. Psychrophiles: from biodiversity to biotechnology. Margesin R. et al.. Springer. Berlin, 2008; 247–264.
  • Kritee K. Barkay T. Blum J.D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochimica et Cosmochimica Acta. 2009; 73: 1285–1296.
  • Krummel E.M. Gregory-Eaves I. Macdonald R.W. Kimpe L.E. Demers M.J. Smol J.P. Finney B. Blais J.M. Concentrations and fluxes of salmon-derived polychlorinated biphenyls (PCBs) in lake sediments. Environmental Science & Technology. 2005; 39: 7020–7026.
  • Lalonde J.D, Amyot M, Doyon M.R. & Auclair J.C. 2003. Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). Journal of Geophysical Research—Atmospheres. 108, 10.3402/polar.v30i0.15469.
  • Lalonde J.D. Amyot M. Kraepiel A.M.L. Morel F.M.M. Photooxidation of Hg(0) in artificial and natural waters. Environmental Science & Technology. 2001; 35: 1367–1372.
  • Lalonde J.D. Amyot M. Orvoine J. Morel F.M.M. Auclair J.C. Ariya P.A. Photoinduced oxidation of Hg0(aq) in the waters from the St. Lawrence estuary. Environmental Science & Technology. 2004; 38: 508–514.
  • Lalonde J.D. Poulain A.J. Amyot M. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environmental Science & Technology. 2002; 36: 174–178.
  • Larose C. Berger S. Ferrari C. Navarro E. Dommergue A. Schneider D. Vogel T.M. Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles. 2010; 14: 205–212.
  • Larose C. Dommergue A. de Angelis M. Cossa D. Averty B. Marusczak N. Soumis N. Schneider D. Ferrari C.P. Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic. Geochimica et Cosmochimica Acta. 2010; 74: 6263–6275.
  • Lawrence D.M. & Slater A.G. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters. 32, L24401., 10.3402/polar.v30i0.15469.
  • Lehnherr I. St. Louis V.L. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environmental Science & Technology. 2009; 43: 5692–5698.
  • Lindberg S.E. Brooks S. Lin C.J. Scott K.J. Landis M.S. Stevens R.K. Goodsite M. Richter A. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environmental Science & Technology. 2002; 36: 1245–1256.
  • Loseto L.L. Lean D.R. Siciliano S.D. Snowmelt sources of methylmercury to High Arctic ecosystems. Environmental Science & Technology. 2004; 38: 3004–3010.
  • Loseto L.L. Siciliano S.D. Lean D.R. Methylmercury production in High Arctic wetlands. Environmental Toxicology & Chemistry. 2004; 23: 17–23.
  • Loseto L.L. Stern G.A. Deibel D. Connelly T.L. Prokopowicz A. Lean D.R.S. Fortier L. Ferguson D.R.S. Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales. Journal of Marine Systems. 2008; 3–4: 1012–1024.
  • Macdonald R.W. Harner T. Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment. 2005; 342: 5–86.
  • Macdonald R.W. Loseto L.L. Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change. Environmental Chemistry. 2010; 7: 133–138.
  • Malcolm E.G. Schaefer J.K. Ekstrom E.B. Tuit C.B. Jayakumar A. Park H. Ward B.B. Morel E.M.M. Mercury methylation in oxygen deficient zones of the oceans: no evidence for the predominance of anaerobes. Marine Chemistry. 2010; 122: 11–19.
  • Manganelli M, Malfatti F, Samo T.J, Mitchell B.G, Wang H. & Azam F. 2009. Major role of microbes in carbon fluxes during austral winter in the southern Drake Passage. PLoS One. 4, e6941., 10.3402/polar.v30i0.15469.
  • Marvin-Dipasquale M.C. Agee J. McGowan C. Oremland R.S. Thomas M. Krabbenhoft D. Gilmour C.C. Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environmental Science & Technology. 2000; 34: 4908–4917.
  • Marvin-Dipasquale M.C. Oremland R.S. Bacterial methylmercury degradation in Florida Everglades peat sediment. Environmental Science & Technology. 1998; 32: 2556–2563.
  • Marx J.G. Carpenter S.D. Deming J.W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Canadian Journal of Microbiolgoy. 2009; 55: 63–72.
  • Mason R.P. Morel F.M.M. Hemond H.F. The role of microorganisms in elemental mercury formation in natural-waters. Water, Air, and Soil Pollution. 1995; 80: 775–787.
  • Mergler D. Anderson H.A. Chan L.H. Mahaffey K.R. Murray M. Sakamoto M. Stern A.H. Methylmercury exposure and health effects in humans: a worldwide concern. Ambio. 2007; 36: 3–11.
  • Methe B.A. Nelson K.E. Deming J.W. Momen B. Melamud E. Zhang X.J. Moult J. Madupu R. Nelson W.C. Dodson R.J. Brinkac L.M. Daugherty S.C. Durkin A.S. DeBoy R.T. Kolonay J.F. Sullivan S.A. Zhou L.W. Davidsen T.M. Wu M. Huston A.L. Lewis M. Weaver B. Weidman J.F. Khouri H. Utterback T.R. Feldblyum T.V. Fraser C.M. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102: 10913–10918.
  • Miller R.V. Gammon K. Day M.J. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian Journal of Microbiology. 2009; 55: 37–45.
  • Mindlin S. Minakhin L. Petrova M. Kholodii G. Minakhina S. Gorlenko Z. Nikiforov V. Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Research in Microbiology. 2005; 156: 994–1004.
  • Møller A.K. Barkay T. Abu Al-Soud W. Sørensen S.J. Skov H. Kroer N. Diversity and characterization of mercury resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. FEMS Microbiology Ecology. 2011; 75: 390–401.
  • Monperrus M. Tessier E. Amouroux D. Leynaert A. Huonnic P. Donarda O.F.X. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Marine Chemistry. 2007; 107: 49–63.
  • Morel F.M.M. Kraepiel A.M.L. Amyot M. The chemical cycle and bioaccumulation of mercury. Annual Reviews in Ecology and Systematics. 1998; 29: 543–566.
  • Nazaret S. Jeffrey W.H. Saouter E. von Haven R. Barkay T. MerA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Applied and Environmental Microbiology. 1994; 60: 4059–4065.
  • Niki H. Maker P.S. Savage C.M. Breitenbach L.P. A Fourier transform infrared study of the kinetics and mechanism for the reaction Cl+CH3HgCH3. Journal of Physical Chemistry. 1983; 87: 3722–3724.
  • O'Driscoll N.J. Lean D.R.S. Loseto L.L. Carignan R. Siciliano S.D. Effect of dissolved organic carbon on the photoproduction of dissolved gaseous mercury in lakes: potential impacts of forestry. Environmental Science & Technology. 2004; 38: 2664–2672.
  • Oiffer L. Siciliano S.D. Methyl mercury production and loss in Arctic soil. Science of the Total Environment. 2009; 407: 1691–1700.
  • Osborn A.M. Bruce K.D. Strike P. Ritchie D.A. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiology Reviews. 1997; 19: 239–262.
  • Petrova M.A. Mindlin S.Z. Gorlenko Z.M. Kalyaeva E.S. Soina V.S. Bogdanova E.S. Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants. Russian Journal of Genetics. 2002; 38: 1330–1334.
  • Pirrone N. Cinnirella S. Feng X. Finkelman R.B. Friedli H.R. Leaner J. Mason R. Mukherjee A.B. Stracher G.B. Streets D.G. Telmer K. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics. 2010; 10: 5951–5964.
  • Poissant L. Zhang H.H. Canario J. Constant P. Critical review of mercury fates and contamination in the Arctic tundra ecosystem. Science of the Total Environment. 2008; 400: 173–211.
  • Polunin N. Kelly C.D. Arctic aerobiology; fungi and bacteria, etc., caught in the air during flights over the geographical North Pole. Nature. 1952; 170: 314–316.
  • Pongratz R. Heumann K.G. Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere. 1999; 39: 89–102.
  • Poulain A.J. Amyot M. Findlay D. Tel-Or S. Barkay T. Hintelmann H. Biological and photchemical production of dissolved gaseous mercury in a boreal lake. Limnology and Oceanography. 2004; 49: 2265–2275.
  • Poulain A.J. Garcia E. Amyot M. Campbell P.G.C. Arlya P.A. Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow. Geochimica et Cosmochimica Acta. 2007; 71: 3419–3431.
  • Poulain A.J. Lalonde J.D. Amyot M. Shead J.A. Raofie F. Ariya P.A. Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment. 2004; 38: 6763–6774.
  • Poulain A.J. Ni Chadhain S.M. Ariya P.A. Amyot M. Garcia E. Campbell P.G.C. Zylstra G.J. Barkay T. Potential for mercury reduction by microbes in the High Arctic. Applied and Environmental Microbiology. 2007; 73: 2230–2238.
  • Purdy K.J. Nedwell D.B. Embley T.M. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Applied and Environmental Microbiology. 2003; 69: 3181–3191.
  • Ranchou-Peyruse M. Monperrus M. Bridou R. Duran R. Amouroux D. Salvado J.C. Guyoneaud R. Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: implications for environmental studies. Geomicrobiology Journal. 2009; 26: 1–8.
  • Raofie F. Ariya P.A. Product study of the gas-phase BrO-initiated oxidation of Hg0: evidence for stable Hg1+ compounds. Environmental Science & Technology. 2004; 38: 4319–4326.
  • Ravenschlag K. Sahm K. Amann R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Applied and Environmental Microbiology. 2001; 67: 387–395.
  • Rivkina E. Laurinavichius K. McGrath J. Tiedje J. Shcherbakova V. Gilichinsky D. Microbial life in permafrost. Advances in Space Research. 2004; 33: 1215–1221.
  • Rolfhus K.R. Fitzgerald W.F. Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater. Marine Chemistry. 2004; 90: 125–136.
  • Schaefer J.K. Yagi J. Reinfelder J. Cardona-Marek T. Ellickson K. Tel-Or S. Barkay T. The role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury contaminated natural waters. Environmental Science & Technology. 2004; 34: 4304–4311.
  • Schroeder W.H. Anlauf K.G. Barrie L.A. Lu J.Y. Steffen A. Schneeberger D.R. Berg T. Arctic springtime depletion of mercury. Nature. 1998; 394: 331–332.
  • Schroeder W.H. Munthe J. Atmospheric mercury—an overview. Atmospheric Environment. 1998; 32: 809–822.
  • Scott K.J. Bioavailable mercury in Arctic snow determined by a light-emitting mer-lux bioreporter. Arctic. 2001; 54: 92–95.
  • Segawa T. Miyamoto K. Ushida K. Agata K. Okada N. Kohshima S. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Applied and Environmental Microbiology. 2005; 71: 123–130.
  • Selifonova O. Burlage R. Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Applied and Environmental Microbiology. 1993; 59: 3083–3090.
  • Selin N.E. Global biogeochemical cycling of mercury: a review. Annual Review of Envrionment and Resources. 2009; 34: 43–63.
  • Sellers P. Kelly C.A. Rudd J.W.M. MacHutchon A.R. Photodegradation of methylmercury in lakes. Nature. 1996; 380: 694–697.
  • Sherman L.S. Blum J.D. Johnson K.P. Keeler G.J. Barres J.A. Douglas T.A. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nature Geoscience. 2010; 3: 173–177.
  • Sheu G.R. Mason R.P. An examination of the oxidation of elemental mercury in the presence of halide surfaces. Journal of Atmospheric Chemistry. 2004; 48: 107–130.
  • Siciliano S.D. O'Driscoll N.J. Lean D.R. Microbial reduction and oxidation of mercury in freshwater lakes. Environmental Science & Technology. 2002; 36: 3064–3068.
  • Siciliano S.D. O'Driscoll N.J. Tordon R. Hill J. Beauchamp S. Lean D.R. Abiotic production of methylmercury by solar radiation. Environmental Science & Technology. 2005; 39: 1071–1077.
  • Simbahan J. Kurth E. Schelert J. Dillman A. Moriyama E. Jovanovich S. Blum P. Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Applied and Environmental Microbiology. 2005; 71: 8836–8845.
  • Skov H. Brooks S. Goodsite M.E. Lindberg S.E. Meyers T.P. Landis M. Larsen M.R.B. Jensen B. McConville G. Chung K.H. Christensen J. The fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmospheric Environment. 2006; 40: 5452–5463.
  • Slater F.R. Bruce K.D. Ellis R.J. Lilley A.K. Turner S.L. Heterogeneous selection in a spatially structured environment affects fitness tradeoffs of plasmid carriage in pseudomonads. Applied and Environmental Microbiology. 2008; 74: 3189–3197.
  • Slater F.R. Bruce K.D. Ellis R.J. Lilley A.K. Turner S.L. Determining the effects of a spatially heterogeneous selection pressure on bacterial population structure at the sub-millimetre scale. Microbial Ecology. 2010; 60: 873–884.
  • Smith T. Pitts K. McGarvey J.A. Summers A.O. Bacterial oxidation of mercury metal vapor, Hg(0). Applied and Environmental Microbiology. 1998; 64: 1328–1332.
  • St. Louis V.L. Hintelmann H. Graydon J.A. Kirk J.L. Barker J. Dimock B. Sharp M.J. Lehnherr I. Methylated mercury species in Canadian High Arctic marine surface waters and snowpacks. Environmental Science & Technology. 2007; 41: 6433–6441.
  • St. Louis V.L. Rudd J.W. Kelly C.A. Bodaly R.A. Paterson M.J. Beaty K.G. Hesslein R.H. Heyes A. Majewski A.R. The rise and fall of mercury methylation in an experimental reservoir. Environmental Science & Technology. 2004; 38: 1348–1358.
  • St. Louis V.L. Sharp M.J. Steffen A. May A. Barker J. Kirk J.L. Kelly D.J. Arnott S.E. Keatley B. Smol J.P. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic. Environmental Science & Technology. 2005; 39: 2686–2701.
  • Steffen A. Douglas T. Amyot M. Ariya P. Aspmo K. Berg T. Bottenheim J. Brooks S. Cobbett F. Dastoor A. Dommergue A. Ebinghaus R. Ferrari C. Gardfeldt K. Goodsite M.E. Lean D. Poulain A. Scherz C. Skov H. Sommar J. Temme T. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water. Atmospheric Chemistry and Physics Discussions. 2007; 7: 10837–10931.
  • Steffen A. Schroeder W. Bottenheim J. Narayan J. Fuentes J.D. Atmospheric mercury concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000. Atmospheric Environment. 2002; 36: 2653–2661.
  • Streets D.G. Zhang Q. Wu Y. Projections of global mercury emissions in 2050. Environmental Science & Technology. 2009; 43: 2983–2988.
  • Summers A.O. Untwist and shout: a heavy metal-responsive transcriptional regulator. Journal of Bacteriology. 1992; 174: 3097–3101.
  • Sunderland E.M, Krabbenhoft D.P, Moreau J.W, Strode S.A. & Landing W.M. 2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochemical Cycles. 23, 10.3402/polar.v30i0.15469.
  • Teitzel G.M. Parsek M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology. 2003; 69: 2313–2320.
  • Van Oostdam J, Donaldson S.G, Feeley M, Arnold D, Ayotte P, Bondy G, Chan L, Dewaily E, Furgal C.M, Kuhnlein H, Loring E, Muckle G, Myles E, Receveur O, Tracy B, Gill U. & Kalhok S. 2005. Human health implications of environmental contaminants in Arctic Canada: a review. Science of the Total Environment. 351/352: 165–246.
  • Vlassov A.V. Kazakov S.A. Johnston B.H. Landweber L.F. The RNA world on ice: a new scenario for the emergence of RNA information. Journal of Molecular Evolution. 2005; 61: 264–273.
  • Vonk J.W. Sijpesteijn A.K. Studies on the methylation of mercuric chlorid by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek. 1973; 39: 505–513.
  • Weber J.H. Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere. 1993; 26: 2063–2077.
  • Westöö G. Determination of methylmercury compounds in foodstuffs. I. Methylmercury compounds in fish, identification and determination. Acta Chemica Scandinavia. 1966; 20: 2131–2137.
  • Whalin L.M. Mason R.P. A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon (R) bags and additions of isotopically labeled mercury. Analytica Chimica Acta. 2006; 558: 211–221.
  • Wiatrowski H.A. Das S. Kukkadapu R. Ilton E.S. Barkay T. Yee N. Reduction of Hg(II) to Hg(O) by magnetite. Environmental Science & Technology. 2009; 43: 5307–5313.
  • Wiatrowski H.A. Ward P.M. Barkay T. Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environmental Science & Technology. 2006; 40: 6690–6696.
  • Wren C.D. A review of metal accumulation and toxicity in wild mammals .1. Mercury. Environmental Research. 1986; 40: 210–244.
  • Yergeau E. Arbour M. Brousseau R. Juck D. Lawrence J.R. Masson L. Whyte L.G. Greer C.W. Microarray and real-time PCR analyses of the responses of High-Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Applied and Environmental Microbiology. 2009; 75: 6258–6267.
  • Yu R.-Q. Adatto I. Montesdeoca M.R. Driscoll C.T. Hines M.E. Barkay T. Mercury methylation in sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiology Ecology. 2010; 74: 655–668.
  • Zhang H. Dill C. Kuiken T. Ensor M. Crocker W.C. Change of dissolved gaseous mercury concentrations in a southern reservoir lake (Tennessee) following seasonal variation of solar radiation. Environmental Science & Technology. 2006; 40: 2114–2119.
  • Zhang T. Hsu-Kim H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience. 2010; 3: 473–476.