1,078
Views
1
CrossRef citations to date
0
Altmetric
Research/review articles

Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

, , , &
Article: 17390 | Published online: 25 Apr 2013

References

  • Amato P, Hennebelle R, Magand O, Sancelme M, Delort A.-M, Barbante C, Boutron C, Ferrari C. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology. 2007; 59: 255–264.
  • Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H. The contribution of bacterial and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research. 2002; 64: 109–119.
  • Bowman J.S, Rasmussen S, Blom N, Deming J.W, Rysgaard S, Sicheritz-Ponten T. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME Journal. 2012; 6: 11–20.
  • Caporaso J.G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F.D, Costello E.K, Fierer N, Pena A.G, Goodrich J.K, Gordon J.I, Huttley G.A, Kelley S.T, Knights D, Koenig J.E, Ley R.E, Lozupone C.A, McDonald D, Muegge B.D, Pirrung M, Reeder J, Sevinsky J.R, Turnbaugh P.J, Walters W.A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010; 7: 335–336.
  • Carpenter E.J, Lin S.J, Capone D.G. Bacterial activity in South Pole snow. Applied and Environmental Microbiology. 2000; 66: 4514–4517.
  • Cloutier J, Prevost D, Nadeau P, Antoun H. Heat and cold shock protein-synthesis in Arctic and temperate strains of Rhizobia. Applied and Environmental Microbiology. 1992; 58: 2846–2853.
  • Cole J.R, Wang Q, Cardenas E, Fish J, Chai B, Farris R.J, Kulam-Syed-Mohideen A.S, McGarrell D.M, Marsh T, Garrity G.M, Tiedje J.M. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research. 2009; 37: D141–D145.
  • Crump B.C, Adams H.E, Hobbie J.E, Kling G.W. Biogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment. Ecology. 2007; 88: 1365–1378.
  • Ellis-Evans J.C. Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity and Conservation. 1996; 5: 1395–1431.
  • Fricker M, Messelhausser U, Busch U, Scherer S, Ehling-Schulz M. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Applied and Environmental Microbiology. 2007; 73: 1892–1898.
  • Gilbert J.A, Davies P.L, Laybourn-Parry J. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiology Letters. 2005; 245: 67–72.
  • Groudieva T, Kambourova M, Yusuf H, Royter M, Grote R, Trinks H, Antranikian G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitsbergen. Extremophiles. 2004; 8: 475–488.
  • Hodson A, Anesio A.M, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. Glacial ecosystems. Ecological Monographs. 2008; 78: 41–67.
  • Jones H.G. The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrological Processes. 1999; 13: 2135–2147.
  • Junge K, Eicken H, Deming J.W. Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Applied and Environmental Microbiology. 2004; 70: 550–557.
  • Kellogg C.A, Griffin D.W. Aerobiology and the global transport of desert dust. Trends in Ecology and Evolution. 2006; 21: 638–644.
  • Kirchman D.L, Cottrell M.T, Lovejoy C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environmental Microbiology. 2010; 12: 1132–1143.
  • Kroer N. Bacterial growth efficiency on natural dissolved organic matter. Limnology and Oceanography. 1993; 38: 1282–1290.
  • Kumar G.S, Jagannadham M.V, Ray M.K. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. Journal of Bacteriology. 2002; 184: 6746–6749.
  • Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel T.M. Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles. 2010; 14: 205–212.
  • Liston G.E, Winther J.-G. Antarctic surface and subsurface snow and ice melt fluxes. Journal of Climate. 2005; 18: 1469–1481.
  • Lopez-Benavides M.G, Williamson J.H, Pullinger G.D, Lacy-Hulbert S.J, Cursons R.T, Leigh J.A. Field observations on the variation of Streptococcus uberis populations in a pasture-based dairy farm. Journal Dairy Science. 2007; 90: 5558–5566.
  • Malmstrom R.R, Straza T.R.A, Cottrell M.T, Kirchman D.L. Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquatic Microbial Ecology. 2007; 47: 45–55.
  • Møller A.K, Barkay T, Al-Soud W.A, Sørensen S.J, Skov H, Kroer N. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. FEMS Microbiology Ecology. 2011; 75: 390–401.
  • Panikov N, Sizova M.V. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiology Ecolology. 2006; 59: 500–512.
  • Pearce D.A, van der Gast C.J, Lawley B, Ellis-Evans J.C. Bacterioplanktion community diversity in a maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiology Ecology. 2003; 45: 59–70.
  • Priscu J.C, Christner B.C, Bull A.T. Earth's icy biosphere. Microbial diversity and bioprospecting. 2004; Washington, DC: American Society for Microbiology. 130–145.
  • Rasmussen L.D, Zawadsky C, Binnerup S.J, Oregaard G, Sorensen S.J, Kroer N. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences. Applied and Environmental Microbiology. 2008; 74: 3795–3803.
  • Rowland G.A, Grannas A.M. A solid-phase chemical actinometer film for measurement of solar UV penetration into snowpack. Cold Regions Science and Technology. 2011; 66: 75–83.
  • Sattler B, Puxbaum H, Psenner R. Bacterial growth in supercooled cloud droplets. Geophysical Research Letters. 2001; 28: 239–242.
  • Simon C, Wiezer A, Strittmatter A.W, Daniel R. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Applied and Environmental Microbiology. 2009; 75: 7519–7526.
  • Thomas W.H, Duval B. Sierra Nevada, California, U.S.A., snow algae: snow albedo changes, algal–bacterial interrelationships, and ultraviolet radiation effects. Arctic and Alpine Research. 1995; 27: 389–399.
  • Tian F, Yu Y, Chen B, Li H, Yao Y.-F, Guo X.-K. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biology. 2009; 32: 93–103.
  • Yergeau E, Hogues H, Whyte L.G, Greer C.W. The functional potential of High Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME Journal. 2010; 4: 1206–1214.
  • Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering. 2005; 89: 670–679.
  • Zhao J.S, Manno D, Hawari J. Psychrilyobacter atlanticus gen. nov., sp nov., a marine member of the phylum Fusobacteria that produces H(2) and degrades nitramine explosives under low temperature conditions. International Journal of Systematic and Evolutionary Microbiology. 2009; 59: 491–497.
  • Zwart G, Crump B.C, Agterveld M.P.K.V, Hagen F, Han S.K. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology. 2002; 28: 141–155.