1,360
Views
0
CrossRef citations to date
0
Altmetric
Thematic Cluster: The Arctic in Rapid Transition - Marine Ecosystems

The effect of temperature on egg development rate and hatching success in Calanus glacialis and C. finmarchicus

, , &
Article: 23947 | Published online: 16 Jun 2015

References

  • Alcaraz M., Felipe J., Grote U., Arashkevich E., Nikishina A. Life in a warming ocean: thermal thresholds and metabolic balance of Arctic zooplankton. Journal of Plankton Research. 2013; 36: 3–10.
  • B[ebreve]lehrádek J. Temperature and living matter. 1935; Berlin: Borntraeger. (Protoplasma-Monographien.).
  • Brooks S.P. Bayesian computation: a statistical revolution. Philosophical Transactions of the Royal Society A. 2003; 361: 2681–2697.
  • Brooks S.P., Gelman A. Alternative methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics. 1998; 7: 434–455.
  • Campbell R.G., Wagner M.M., Teegarden G.J., Boudreau C.A., Durbin E.G. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Marine Ecology Progress Series. 2001; 221: 161–183.
  • Carstensen J., Weydmann A. Tipping points in the Arctic: eyeballing or statistical significance?. Ambio. 2012; 41: 34–43.
  • Carstensen J., Weydmann A., Olszewska A., Kwasniewski S. Effects of environmental conditions on the biomass of Calanus spp. in the Nordic seas. Journal of Plankton Research. 2012; 34: 951–966.
  • Clark J.S. Why environmental scientists are becoming Bayesians. Ecology Letters. 2005; 8: 2–14.
  • Clarke A. Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution. 2003; 18: 573–581.
  • Conover R.J. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the Northern Hemisphere. Hydrobiologia. 1988; 167/168: 127–142.
  • Cook K.B., Bunker A., Hay S., Hirst A.G., Speirs D.C. Naupliar development times and survival of the copepods Calanus helgolandicus and Calanus finmarchicus in relation to food and temperature. Journal of Plankton Research. 2007; 29: 757–767.
  • Corkett C.J., McLaren A., Sevigny J.M. The rearing of the marine calanoid copepods Calanus finmarchicus (Gunnerus), C. glacialis Jaschnov and C. hyperboreus Kroyer with comment on the equiproportional rule. Syllogeus. 1986; 58: 539–546.
  • Falk-Petersen S., Timofeev S., Pavlov V., Sargent J.R. Ørbæk J.B., etal. Climate variability and possible effects on Arctic food chains: the role of Calanus. Arctic–alpine ecosystems and people in a changing environment. 2007; Berlin: Springer. 147–166.
  • Grenvald J.C., Nielsen T.G., Hjorth M. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods. Ecotoxicology. 2013; 22: 184–198.
  • Hirche H.J., Kattner G. Egg production and lipid content of Calanus glacialis in spring: indication of a food-dependent and food-independent reproductive mode. Marine Biology. 1993; 117: 615–622.
  • Huntley M.E., Lopez M.D.G. Temperature-dependent production of marine copepods: a global synthesis. American Naturalist. 1992; 140: 201–242.
  • Jarque C.M., Bera A.K. A test for normality of observations and regression residuals. International Statistical Review. 1987; 55: 163–172.
  • Jaschnov W.A. Distribution of Calanus species in the seas of the Northern Hemisphere. Internationale Revue gesamten Hydrobiologie. 1970; 55: 197–212.
  • Jeffreys H. Theory of probability. 1961; 3rd edn, London: Oxford University Press.
  • Karnovsky N.J., Weslawski J.M., Kwasniewski S., Walkusz W., Beszczynska-Moeller A. Foraging behavior of little auks in heterogeneous environment. Marine Ecology Progress Series. 2003; 253: 289–303.
  • Kery M. Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analyses. 2010; Amsterdam: Academic Press.
  • Kjellerup S., Dunweber M., Swalethorp R., Nielsen T.G., Moller E.F., Markager S., Hansen B.W. Effects of a future warmer ocean on the so-existing copepods Calanus finmarchicus and C. glacialis in Disko Bay, western Greenland. Marine Ecology Progress Series. 2012; 447: 87–108.
  • Lunn D.J., Best N., Whittaker J.C. Generic reversible jump MCMC using graphical models. Statistics and Computing. 2008; 19: 395–408.
  • Lunn D.J., Jackson Ch., Best N., Thomas A., Spiegelhalter D. The BUGS book: a practical introduction to Bayesian analysis. 2012; Boca Raton, FL: CRC Press.
  • Lunn D.J., Thomas A., Best N., Spiegelhalter D. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing. 2000; 10: 325–337.
  • Lunn D.J., Whittaker J.C., Best N. A Bayesian toolkit for genetic association studies. Genetic Epidemiology. 2006; 30: 231–247.
  • Madsen S.J., Nielsen T.G., Tervo O.M., Söderkvist J. On the importance of feeding for egg reproduction of Calanus finmarchicus and C. glacialis during the Arctic spring. Marine Ecology Progress Series. 2008; 353: 177–190.
  • McLaren I., Corkett C.J., Zillioux E.J. Temperature adaptations of copepod eggs from the Arctic to the tropics. Biological Bulletin. 1969; 137: 486–493.
  • Niehoff B., Madsen S.D., Hansen B.W., Nielsen T.G. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Marine Biology. 2002; 140: 567–576.
  • Pasternak A.F., Arashkevich E.G., Grote U., Nikishina A.B., Solovyev K.A. Different effects of increased water temperature on egg production of Calanus finmarchicus and C. glacialis. Oceanology. 2013; 53: 547–553.
  • Planque B., Batten S.D. Calanus finmarchicus in the North Atlantic: the year of Calanus in the context of interdecadal change. ICES Journal of Marine Science. 2000; 57: 1528–1535.
  • Søreide J.E., Leu E., Berge J., Graeve M., Falk-Petersen S. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology. 2010; 16: 3154–3163.
  • Spiegelhalter D.J., Best N.G., Carlin B.P., Van der Linde A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society B. 2002; 64: 583–639.
  • Stempniewicz L., Blachowiak-Samolyk K., Weslawski J.M. Impact of climate change on zooplankton communities, seabird populations and Arctic ecosystem—a scenario. Deep-Sea Research Part II. 2007; 54: 2934–2945.
  • Unal E., Bucklin A. Basin-scale population genetic structure of the planktonic copepod Calanus finmarchicus in the North Atlantic Ocean. Progress in Oceanography. 2010; 87: 175–185.
  • Wassmann P. Arctic marine ecosystems in an era of rapid climate change. Progress in Oceanography. 2011; 90: 1–17.
  • Weydmann A., Carstensen J., Goszczko I., Dmoch K., Olszewska A., Kwasniewski S. Shift towards the dominance of Boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Marine Ecology Progress Series. 2014; 501: 41–52.
  • Weydmann A., Søreide J.E., Kwasniewski S., Leu E., Falk-Petersen S., Berge J. Ice-related seasonality in zooplankton community composition in a High Arctic fjord. Journal of Plankton Research. 2013; 35: 831–842.
  • Zwolicki A., Zmudczyńska-Skarbek K.M., Iliszko L., Stempniewicz L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biology. 2013; 36: 363–372.