416
Views
0
CrossRef citations to date
0
Altmetric
Research/review articles

Transpression and tectonic exhumation in the Heimefrontfjella, western orogenic front of the East African/Antarctic Orogen, revealed by quartz textures of high strain domains

, , &
Article: 25420 | Published online: 15 Jun 2016

References

  • Arndt N.T., Todt W., Chauvel C., Tapfer M., Weber K. U–Pb zircon age and Nd isotopic composition of granitoids, charnockites and supracrustal rocks from Heimefrontfjella, Antarctica. Geologische Rundschau. 1991; 80: 759–777.
  • Bauer W. Strukturentwicklung und Petrogenese des Grundgebirges der nördlichen Heimefrontfjella (westliches Dronning Maud Land/Antarktika). (Structural evolution and petrogenesis of the metamorphic basement complex of the northern Heimefrontfjella [western Dronning Maud Land/Antarctica].) Berichte zur Polarforschung 171. Bremerhaven. 1995
  • Bauer W., Fielitz W., Fanning C.M., Jacobs J., Spaeth G. Mafic dykes from Heimefrontfjella and implications for the post-Grenvillian to pre-Pan-African geological evolution of western Dronning Maud Land (Antarctica). Antarctic Science. 2003; 15: 379–391.
  • Bauer W., Fielitz W., Jacobs J., Spaeth G. Neoproterozoic mafic dykes of the Heimefrontfjella (East Antarctica). Polarforschung. 2009; 79: 33–38.
  • Bauer W., Jacobs J., Fanning C.M., Schmidt R. Late Mesoproterozoic arc and back-arc volcanism in the Heimefrontfjella (East Antarctica) and implications for the palaeogeography at the southeastern margin of the Kaapvaal-Grunehogna Craton. Gondwana Research. 2003; 6: 449–465.
  • Bauer W., Jacobs J., Thomas R.J., Spaeth G., Weber K. Geology of the Kottas Terrane, Heimefrontfjella (East Antarctica). Polarforschung. 2009; 79: 23–28.
  • Bauer W., Thomas R.J., Jacobs J. Yoshida M. Proterozoic–Cambrian history of Dronning Maud Land in the context of Gondwana assembly. Proterozoic East Gondwana: supercontinent assembly and breakup. 2003; London: Geological Society of London. 247–269.
  • Berthé D., Choukroune P., Jegouzo P. Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. Journal of Structural Geology. 1979; 1: 31–42.
  • Blacic J.D. Plastic deformation mechanisms in quartz: the effect of water. Tectonophysics. 1975; 27: 271–294.
  • Boullier A.M., Bouchez J.L. Le quartz en rubans dans les mylonites. (Ribbon quartz in mylonites.). Bulletin Société géologique France. 1978; 20: 253–262.
  • Culshaw N.G., Fyson W.K. Quartz ribbon in high grade granite gneiss: modifications of dynamically formed quartz c-axis preferred orientation by oriented grain growth. Journal of Structural Geology. 1984; 6: 663–668.
  • Fueten F. Tectonic interpretations of systematic variations in quartz c-axis fabrics across the Thompson Belt. Journal of Structural Geology. 1992; 14: 775–789.
  • Fueten F., Robin P.Y.F., Stephens R. A model for the development of a domainal quartz c-axis fabric in coarse-grained gneiss. Journal of Structural Geology. 1991; 13: 1111–1124.
  • Golynsky A., Jacobs J. Grenville-age versus Pan-African magnetic anomaly imprints in western Dronning Maud Land, East Antarctica. Journal of Geology. 2001; 109: 136–142.
  • Heilbronner R., Tullis J. Meer S. de. The effect of static annealing on microstructures and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. Deformation mechanisms, rheology and tectonics: current status and future perspectives. 2002; London: Geological Society of London. 191–218.
  • Hirth G., Tullis J. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology. 1992; 14: 145–159.
  • Hoeppener R. Tektonik im Schiefergebirge. (Tectonics of the Rhenish Schiefergebirge.). Geologische Rundschau. 1955; 44: 25–58.
  • Jacobs J. A review of two decades (1986–2008) of geochronological work in Heimefrontfjella, and geotectonic interpretation of western Dronning Maud Land, East Antarctica. Polarforschung. 2009; 79: 47–57.
  • Jacobs J., Ahrendt H., Kreutzer H., Weber K. K–Ar, 40Ar–39Ar and apatite fission track evidence for Neoproterozoic and Mesozoic basement rejuvenation events in the Heimefrontfjella and Mannefallknausane. Precambrian Research. 1995; 75: 251–262.
  • Jacobs J., Bauer W., Spaeth G., Thomas R.J., Weber K. Lithology and structure of the Grenville-age (~1.1 Ga) basement of Heimefrontfjella (East Antarctica). Geologische Rundschau. 1996; 85: 800–821.
  • Jacobs J., Elburg M., Läufer A., Kleinhanns I.C., Henjes-Kunst F., Ruppel A.S., Damaske D., Montero P., Bea F. Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: the missing link, 15–21 E. Precambrian Research. 2015; 265: 249–272.
  • Jacobs J., Fanning C.M., Bauer W. Timing of Grenville-age vs. Pan-African medium- to high grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Research. 2003; 125: 1–20.
  • Jacobs J., Hansen B.T., Henjes-Kunst F., Thomas R.J., Bauer W., Weber K., Armstrong R.A., Cornell D.H. New age constraints on the Proterozoic/Lower Palaeozoic evolution of Heimefrontfjella, East Antarctica, and its bearing on Rodinia/Gondwana correlations. Terra Antartica. 1999; 6: 377–389.
  • Jacobs J., Thomas R.J. Oblique collision at 1.1 Ga along the southern margin of the Kaapvaal continent, SE Africa. Geologische Rundschau. 1994; 83: 322–333.
  • Jacobs J., Thomas R.J., Weber K. Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology. 1993; 21: 203–206.
  • Jessel M.W. Simulation of fabric development in recrystallizing aggregates. I. Description of the model. Journal of Structural Geology. 1988; 10: 771–778.
  • Kruhl J. Prism- and basal-parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology. 1996; 14: 581–589.
  • Law R.D., Schmid S.M., Wheeler J. Simple shear deformation and quartz crystallographic fabrics: a possible natural example from the Torridon area of NW Scotland. Journal of Structural Geology. 1990; 12: 29–45.
  • Lister G.S. The effect of basal-prism mechanism switch on fabric development during plastic deformation of quartzite. Journal of Structural Geology. 1981; 3: 67–75.
  • Lister G.S., Dornsiepen U.F. Fabric transitions in the Saxony granulite terrain. Journal of Structural Geology. 1982; 4: 81–92.
  • Lister G.S., Hobbs B.E. The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. Journal of Structural Geology. 1980; 2: 355–370.
  • Lister G.S., Snoke A.W. S-C mylonites. Journal of Structural Geology. 1984; 6: 617–638.
  • Mackinnon P., Fueten F., Robin P.Y.F. A fracture model for quartz ribbons in straight gneisses. Journal of Structural Geology. 1997; 19: 1–14.
  • Mancktelow N.S. Atypical textures in quartz veins from the Simplon Fault Zone. Journal of Structural Geology. 1987; 9: 995–1005.
  • Nicolas A., Poirier J.P. Crystalline plasticity and solid state flow in metamorphic rocks. 1976; London: Wiley.
  • Passchier C.W., Trouw R.A.J. Microtectonics. 2005; 2nd edn, Berlin: Springer.
  • Pennacchioni G., Menegon L., Leiss B., Nestola F., Bromiley G. Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse-grained quartz veins. Journal of Geophysical Research—Solid Earth. 2010; 115: 12405. http://dx.doi.org/10.1029/2010JB007674.
  • Price G.P. Wenk H.R. Preferred orientations in quartzites. Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. 1985; Orlando, FL: Academic Press. 385–406.
  • Pryer L.L. Microstructures in feldspar from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of Structural Geology. 1993; 15: 21–36.
  • Sander B. Einführung in die Gefügekunde der geologischen Körper II. Die Korngefügekunde. (Introduction to fabric analysis of geological bodies II. The fabric of mineral grains.). 1950; Vienna: Springer.
  • Schaeben H., Siemes H. Determination and interpretation of preferred orientation with texture goniometry: an application of indicators to maximum entropy pole to orientation-density inversion. Mathematical Geology. 1996; 28: 169–201.
  • Schmid S.M., Casey M. Complete fabric analysis of some commonly observed quartz c-axis patterns. Geophysical Monographs. 1986; 36: 263–286.
  • Schulze P. Petrogenese des metamorphen Grundgebirges der zentralen Heimefrontfjella (westliches Dronning Maud Land/Antarktis). (Petrogenesis of the metamorphic basement complex of the central Heimefrontfjella mountains [western Dronning Maud Land/Antarctica].). 1992; Bremerhaven: Alfred Wegener Institute. Berichte zur Polarforschung 117.
  • Stipp M., Stünitz H., Heilbronner R., Schmid S.M. The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology. 2002; 24: 1861–1884.
  • Tikoff B., Teyssier C. Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology. 1994; 16: 1575–1588.
  • Toy V.G., Prior D.J., Norris R.J. Quartz fabrics in the Alpine Fault mylonites: influence of pre-existing preferred orientations on fabric development during progressive uplift. Journal of Structural Geology. 2008; 30: 602–621.
  • Tullis J.A., Christie J.M., Griggs D.T. Microstructures and preferred orientations of experimentally deformed quartzites. GSA Bulletin. 1973; 84: 297–314.
  • White S. The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Philosophical Transactions Royal Society London A. 1976; 283: 69–86.