483
Views
0
CrossRef citations to date
0
Altmetric
Research/review articles

Air warming trends linked to permafrost warming in the sub-Arctic catchment of Tarfala, Sweden

&
Article: 28978 | Published online: 29 Sep 2016

References

  • Andersland O.B., Ladanyi B. An introduction to frozen ground engineering. 1994; Dordrecht: Springer.
  • Andréasson P.-G., Gee D.G. Bedrock geology and morphology of the Tarfala area, Kebnekaise Mts., Swedish Caledonides. Geografiska Annaler Series A. 1989; 71: 235–239.
  • Atchley A.L., Painter S.L., Harp D.R., Coon E.T., Wilson C.J., Liljedahl A.K., Romanovsky V.E. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geoscientific Model Development. 2015; 8: 2701–2722.
  • Bear J. Hydraulics of groundwater. 1979; New York: McGraw-Hill.
  • Bense V.F., Ferguson G., Kooi H. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophysical Research Letters. 2009; 36: L22401. doi: http://dx.doi.org/10.1029/2009GL039225.
  • Bense V.F., Kooi H., Ferguson G., Read T. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. Journal of Geophysical Research—Earth Surface. 2012; 117: F03036. doi: http://dx.doi.org/10.1029/2011JF002143.
  • Bojinski S., Verstraete M., Peterson T.C., Richter C., Simmons A., Zemp M. The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society. 2014; 95: 1431–1443.
  • Chadburn S., Burke E., Essery R., Boike J., Langer M., Heikenfeld M., Cox P., Friedlingstein P. An improved representation of physical permafrost dynamics in the JULES land surface model. Geoscientific Model Development. 2015; 8: 1493–1508.
  • Christiansen H.H., Etzelmüller B., Isaksen K., Juliussen H., Farbrot H., Humlum O., Johansson M., Ingeman-Nielsen T., Kristensen L., Hjort J., Holmlund P., Sannel A.B.K., Sigsgaard C., Åkerman H.J., Foged N., Blikra L.H., Pernosky M.A., Ødegård R.S. The thermal state of permafrost in the Nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes. 2010; 21: 156–181.
  • Coon E., Berndt M., Garimella R., Moulton J.D., Manzini G., Painter S.L. Computational advances in the Arctic terrestrial simulator: modeling permafrost degradation in a warming Arctic. American Geophysical Union Fall Meeting 2013 Abstracts 1. 2013; 2195.
  • Dingman S.L. Physical hydrology. 2002; Upper Saddle River, NJ: Prentice-Hall.
  • Endrizzi S., Gruber S., Dall'Amico M., Rigon R. GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geoscientific Model Development. 2014; 7: 2831–2857.
  • Engelhardt M., Hauck C., Salzmann N. Influence of atmospheric forcing parameters on modelled mountain permafrost evolution. Meteorologische Zeitschrift. 2010; 19: 491–500.
  • Etzelmüller B. Recent advances in mountain permafrost research. Permafrost and Periglacial Processes. 2013; 24: 99–107.
  • Etzelmüller B., Farbrot H., Gudmundsson A., Humlum O., Tveito O.E., Bjornsson H. The regional distribution of mountain permafrost in Iceland. Permafrost and Periglacial Processes. 2007; 18: 185–199.
  • Farbrot H., Isaksen K., Etzelmüller B., Gisnås K. Ground thermal regime and permafrost distribution under a changing climate in northern Norway. Permafrost and Periglacial Processes. 2013; 24: 20–38.
  • Frampton A., Destouni G. Impact of degrading permafrost on subsurface solute transport pathways and travel times. Water Resources Research. 2015; 51: 7680–7701.
  • Frampton A., Painter S., Lyon S.W., Destouni G. Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. Journal of Hydrology. 2011; 403: 352–359.
  • Frampton A., Painter S.L., Destouni G. Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeology Journal. 2013; 21: 271–280.
  • Gardner W.P., Hammond G., Lichtner P. High performance simulation of environmental tracers in heterogeneous domains. Groundwater. 2015; 53: 71–80.
  • Ge S., McKenzie J., Voss C., Wu Q. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophysical Research Letters. 2011; 38: L14402. doi: http://dx.doi.org/10.1029/2011GL047911.
  • Goodrich L.E. The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal. 1982; 19: 421–432.
  • Guymon G.L. Summer moisture–temperature for Arctic tundra. Journal of the Irrigation and Drainage Division. 1976; 102: 403–411.
  • Hammond G.E., Lichtner P.C., Lu C., Mills R.T. Zhang F. Pflotran: reactive flow & transport code for use on laptops to leadership-class supercomputers. Groundwater reactive transport models. 2012; Oak Park, IL: Bentham Science Publishers. 141–159.
  • Hansen J., Ruedy R., Glascoe J., Sato M. GISS analysis of surface temperature change. Journal of Geophysical Research—Atmospheres. 1999; 104: 30997–31022.
  • Harris C., Arenson L.U., Christiansen H.H., Etzelmüller B., Frauenfelder R., Gruber S., Haeberli W., Hauck C., Hölzle M., Humlum O., Isaksen K., Kääb A., Kern-Lütschg M.A., Lehning M., Matsuoka N., Murton J.B., Nötzli J., Phillips M., Ross N., Seppälä M., Springman S.M., Vonder Mühll D. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews. 2009; 92: 117–171.
  • Harris C., Haeberli W., Vonder Mühll D., King L. Permafrost monitoring in the high mountains of Europe: the PACE Project in its global context. Permafrost and Periglacial Processes. 2001; 12: 3–11.
  • Hillel D. Applications of soil physics. 1980; New York: Academic Press.
  • Hinkel K.M., Hurd J.K. Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research. 2006; 38: 530–539.
  • Hinzman L.D., Goering D.J., Kane D.L. A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. Journal of Geophysical Research—Atmospheres. 1998; 103: 28975–28991.
  • Isaksen K., Holmlund P., Sollid J.L., Harris C. Three deep alpine-permafrost boreholes in Svalbard and Scandinavia. Permafrost and Periglacial Processes. 2001; 12: 13–25.
  • Isaksen K., Mühll D.V., Gubler H., Kohl T., Sollid J.L. Ground surface-temperature reconstruction based on data from a deep borehole in permafrost at Janssonhaugen, Svalbard. Annals of Glaciology. 2000; 31: 287–294.
  • Isaksen K., Sollid J.L., Holmlund P., Harris C. Recent warming of mountain permafrost in Svalbard and Scandinavia. Journal of Geophysical Research—Earth Surface. 2007; 112: F02S04. doi: http://dx.doi.org/10.1029/2006JF000522.
  • Jonsell U., Hock R., Duguay M. Recent air and ground temperature increases at Tarfala Research Station, Sweden. Polar Research. 2013; 32: article no. 19807, doi: http://dx.doi.org/10.3402/polar.v32i0.19807.
  • Juliussen H., Humlum O. Towards a TTOP ground temperature model for mountainous terrain in central–eastern Norway. Permafrost and Periglacial Processes. 2007; 18: 161–184.
  • Kane D.L., Hinzman L.D., Zarling J.P. Thermal response of the active layer to climatic warming in a permafrost environment. Cold Regions Science and Technology. 1991; 19: 111–122.
  • Karra S., Painter S.L., Lichtner P.C. Three-phase numerical model for subsurface hydrology in permafrost-affected regions. The Cryosphere Discuss. 2014; 8: 149–185.
  • Karunaratne K.C., Burn C.R. Phillips M., etal. Freezing n-factors in discontinuous permafrost terrain, Takhini River Valley, Yukon Territory, Canada. ICOP 2003. Permafrost. 8th International Conference on Permafrost. 2003; Vol. 1 Rotterdam: Balkema. 519–524.
  • Koven C.D., Riley W.J., Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. Journal of Climate. 2013; 26: 1877–1900.
  • Kurylyk B.L., MacQuarrie K.T.B., McKenzie J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews. 2014; 138: 313–334.
  • Ling F., Zhang T. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Regions Science and Technology. 2004; 38: 1–15.
  • Luetschg M., Lehning M., Haeberli W. A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps. Journal of Glaciology. 2008; 54: 696–704.
  • Lunardini V. Theory of n-factors and correlation of data. Proceedings of the Third International Conference on Permafrost. 1978; July. 10–13 Vol. 1 Ottawa: National Research Council of Canada. 40–46.
  • Marmy A., Salzmann N., Scherler M., Hauck C. Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions. Environmental Research Letters. 2013; 8: article no. 035048, doi: http://dx.doi.org/10.1088/1748-9326/8/3/035048.
  • McKenzie J.M., Voss C.I., Siegel D.I. Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Advances in Water Resources. 2007; 30: 966–983.
  • O'Donnell J.A., Romanovsky V.E., Harden J.W., McGuire A.D. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Science. 2009; 174: 646–651.
  • Osterkamp T.E. McBeath J.H. Potential impact of a warmer climate on permafrost in Alaska. Proceedings of Conference on the Potential Effects of Carbon-induced Climatic Changes in Alaska. Miscellaneous Publication 83–1. 1984; Fairbanks: School of Agriculture and Land Resources Management, University of Alaska. 106–113.
  • Osterkamp T.E., Romanovsky V.E. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost and Periglacial Processes. 1999; 10: 17–37.
  • Painter S.L. Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Computational Geosciences. 2011; 15: 69–85.
  • Painter S.L., Karra S. Constitutive model for unfrozen water content in subfreezing unsaturated soils. Vadose Zone Journal. 2014; 13: doi: http://dx.doi.org/10.2136/vzj2013.04.0071.
  • Riseborough D., Shiklomanov N., Etzelmüller B., Gruber S., Marchenko S. Recent advances in permafrost modelling. Permafrost and Periglacial Processes. 2008; 19: 137–156.
  • Robertson E.C. Thermal properties of rocks. 1988; Reston, VA: US Geological Survey. USGS Open File Report 88–441.
  • Romanovsky V.E., Sazonova T.S., Balobaev V.T., Shender N.I., Sergueev D.O. Past and recent changes in air and permafrost temperatures in eastern Siberia. Global and Planetary Change. 2007; 56: 399–413.
  • Scherler M., Hauck C., Hoelzle M., Stähli M., Völksch I. Meltwater infiltration into the frozen active layer at an alpine permafrost site. Permafrost and Periglacial Processes. 2010; 21: 325–334.
  • Smith M.W., Riseborough D.W. Permafrost monitoring and detection of climate change. Permafrost and Periglacial Processes. 1996; 7: 301–309.
  • Sollid J.L., Holmlund P., Isaksen K., Harris C. Deep permafrost bore-holes in western Svalbard, northern Sweden and southern Norway. Norwegian Journal of Geography. 2000; 54: 186–191.
  • Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. Jr. Climate change 2007. The physical science basis: contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 2007; Cambridge: Cambridge University Press.
  • Stieglitz M., Déry S.J., Romanovsky V.E., Osterkamp T.E. The role of snow cover in the warming of Arctic permafrost. Geophysical Research Letters. 2003; 30: article no. 1721, doi: http://dx.doi.org/10.1029/2003GL017337.
  • Turner J., Overland J.E., Walsh J.E. An Arctic and Antarctic perspective on recent climate change. International Journal of Climatology. 2007; 27: 277–293.
  • Tutolo B.M., Kong X.-Z., Seyfried W.E. Jr., Saar M.O. High performance reactive transport simulations examining the effects of thermal, hydraulic, and chemical (THC) gradients on fluid injectivity at carbonate CCUS reservoir scales. International Journal of Greenhouse Gas Control. 2015; 39: 285–301.
  • van Genuchten M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 1980; 44: 892–898.
  • Vonder Mühll D., Haeberli W. Thermal characteristics of the permafrost within an active rock glacier (Murtel/Corvatsch, Grisons, Swiss Alps). Journal of Glaciology. 1990; 36: 151–158.
  • Williams P.J., Smith M.W. The frozen earth. Fundamentals of geocryology. 1991; Cambridge: Cambridge University Press.
  • Woo M.-K. Permafrost hydrology. 2012; Dordrecht: Springer.
  • Zhang T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics. 2005; 43: RG4002. doi: http://dx.doi.org/10.1029/2004RG000157.
  • Zhang T., Barry R.G., Knowles K., Ling F., Armstrong R.L. Phillips M., etal. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. ICOP 2003. Permafrost. 8th International Conference on Permafrost. 2003; Vol. 2 Rotterdam: Balkema. 1289–1294.
  • Zhang T., Osterkamp T.E., Stamnes K. Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime. Water Resources Research. 1996; 32: 2075–2086.
  • Zhang T., Osterkamp T.E., Stamnes K. Effects of climate on the active layer and permafrost on the North Slope of Alaska, USA. Permafrost and Periglacial Processes. 1997; 8: 45–67.