1,596
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Genetics of antipsychotic drug outcome and implications for the clinician: into the limelight

, , &
Article: 24663 | Received 15 Apr 2014, Accepted 12 Jun 2014, Published online: 18 Jul 2014

References

  • Ravyn D, Ravyn V, Lowney R, Nasrallah HA. CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res. 2013; 149: 1–14.
  • Vogel F. Moderne probleme der humangenetik. Ergeb Inn Med Kinderheilkd. 1959; 12: 52–125.
  • Gaedigk A. Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatr. 2013; 25: 534–53.
  • Meyer JM. Individual changes in clozapine levels after smoking cessation: results and a predictive model. J Clin Psychopharmacol. 2001; 21: 569–74.
  • Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatr. 2013; 25: 509–33.
  • Insel TR. Assessing the economic costs of serious mental illness. Am J Psychiatr. 2008; 165: 663–5.
  • Terasawa T, Dahabreh I, Castaldi PJ, Trikalinos TA. Systematic reviews on selected pharmacogenetic tests for cancer treatment: CYP2D6 for tamoxifen in breast cancer, KRAS for anti-EGFR antibodies in colorectal cancer, and BCR-ABL1 for tyrosine kinase inhibitors in chronic myeloid leukemia. 2010. Agency for Healthcare Research and Quality Technology Assessment.
  • Personalized treatment through genetics. Physicians Choice Laboratory Services. 2014. Available from: http://pcls.com/testing/genetics [cited 28 January 2014]..
  • Reynolds GP. The pharmacogenetics of symptom response to antipsychotic drugs. Psychiatr Investig. 2012; 9: 1–7.
  • Cha DS, McIntyre RS. Treatment-emergent adverse events associated with atypical antipsychotics. Expert Opin Pharmacother. 2012; 13: 1587–98.
  • Müller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatr. 2013; 25: 554–71.
  • Müller DJ, Brandl EJ, Hwang R, Tiwari AK, Sturgess JE, Zai CC. The AmpliChip(R) CYP450 test and response to treatment in schizophrenia and obsessive compulsive disorder: a pilot study and focus on cases with abnormal CYP2D6 drug metabolism. Genet Test Mol Biomarkers. 2012; 16: 897–903.
  • Staddon S, Arranz MJ, Mancama D, Mata I, Kerwin RW. Clinical applications of pharmacogenetics in psychiatry. Psychopharmacology. 2002; 162: 18–23.
  • Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics. 2007; 17: 93–101. [PubMed Abstract].
  • Mrazek DA. Psychiatric pharmacogenomics. 2010; New York, NY: Oxford University Press.
  • Pharmacology Weekly I. Genetic polymorphisms of cytochrome P450 (CYP) 2D6. Available from: http://www.pharmacologyweekly.com/table-cyp2d6-genetic-polymorphisms-pharmacogenetics [cited 26 November 2013]..
  • McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012; 8: 371–82.
  • Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005; 5: 6–13.
  • Zourkova A, Hadasova E. Paroxetine-induced conversion of cytochrome P450 2D6 phenotype and occurrence of adverse effects. Gen Physiol Biophys. 2003; 22: 103–13. [PubMed Abstract].
  • Flockhart D. Drug Interactions: cytochrome P450 drug interaction table. 2007; Indiana University School of Medicine. Available from: http://medicine.iupui.edu/clinpharm/ddis/main-table/ [cited 26 November 2013]..
  • Shaw G. Polymorphism and single nucleotide polymorphisms (SNPs). BJU Int. 2013; 112: 664–5.
  • Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation. J Mol Biol. 2013; 425: 3970–7.
  • Sallee FR, DeVane CL, Ferrell RE. Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency. J Child Adolesc Psychopharmacol. 2000; 10: 27–34.
  • Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet. 2006; 368: 704.
  • Lee SJ. Clinical application of CYP2C19 pharmacogenetics toward more personalized medicine. Front Genet. 2012; 3: 318. [PubMed Abstract] [PubMed CentralFull Text].
  • Mills DC, Puri R, Hu CJ, Minniti C, Grana G, Freedman MD. Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase. Arterioscler Thromb. 1992; 12: 430–6.
  • Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009; 41: 89–295.
  • Brøsen K, de Morais SM, Meyer UA, Goldstein JA. A multifamily study on the relationship between CYP2C19 genotype and s-mephenytoin oxidation phenotype. Pharmacogenetics. 1995; 5: 312–17.
  • Isaza C, Henao J, Martinez JH, Sepulveda Arias JC, Beltran L. Phenotype-genotype analysis of CYP2C19 in Colombian mestizo individuals. BMC Clin Pharmacol. 2007; 7: 6.
  • Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002; 41: 913–58.
  • Pharmacology Weekly I. Genetic polymorphisms of cytochrome P450 (CYP) 2C19. Available from: http://www.pharmacologyweekly.com/content/pages/drug-table-cytochrome-cyp2c19-genetic-polymorphisms-pharmacogenetics [cited 26 November 2013]..
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013; 138: 103–41.
  • Dobrinas M, Cornuz J, Eap CB. Pharmacogenetics of CYP1A2 activity and inducibility in smokers and exsmokers. Pharmacogenet Genomics. 2013; 23: 286–92.
  • Dobrinas M, Cornuz J, Oneda B, Kohler Serra M, Puhl M, Eap CB. Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther. 2011; 90: 117–25.
  • Kroon LA. Drug interactions with smoking. Am J Health Syst Pharm. 2007; 64: 1917–21.
  • Stark A, Scott J. A review of the use of clozapine levels to guide treatment and determine cause of death. Aust N Z J Psychiatr. 2012; 46: 816–25.
  • Bondolfi G, Morel F, Crettol S, Rachid F, Baumann P, Eap CB. Increased clozapine plasma concentrations and side effects induced by smoking cessation in 2 CYP1A2 genotyped patients. Ther Drug Monit. 2005; 27: 539–43.
  • Kall MA, Clausen J. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum Exp Toxicol. 1995; 14: 801–7.
  • Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009; 48: 689–723.
  • Laika B, Leucht S, Heres S, Schneider H, Steimer W. Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J. 2010; 10: 20–9.
  • Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010; 20: 277–81. [PubMed Abstract] [PubMed CentralFull Text].
  • Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002; 12: 251–63.
  • Ali ZK, Kim RJ, Ysla FM. CYP2C9 polymorphisms: considerations in NSAID therapy. Curr Opin Drug Discov Dev. 2009; 12: 108–14.
  • Pirmohamed M, Park BK. Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicology. 2003; 192: 23–32.
  • Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013; 17: 165–84.
  • Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002; 54: 1257–70.
  • Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002; 3: 561–97.
  • Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H. Pharmacogenetics: from bench to byte – an update of guidelines. Clin Pharmacol Ther. 2011; 89: 662–73.
  • Floyd MD, Gervasini G, Masica AL, Mayo G, George AL Jr, Bhat K. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics. 2003; 13: 595–606.
  • Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics. 2009; 19: 877–83. [PubMed Abstract].
  • Topletz AR, Dennison JB, Barbuch RJ, Hadden CE, Hall SD, Renbarger JL. The relative contributions of CYP3A4 and CYP3A5 to the metabolism of vinorelbine. Drug Metab Dispos. 2013; 41: 1651–61.
  • Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol. 1992; 22: 1–21.
  • Dobrinas M, Eap CB. Cytochrome P4503A pharmacogenetics. HIV PGX. 2007; 2: 1–5.
  • Jaquenoud Sirot E, Knezevic B, Morena GP, Harenberg S, Oneda B, Crettol S. ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol. 2009; 29: 319–26.
  • Olesen OV, Linnet K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol. 2001; 41: 823–32.
  • Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001; 27: 383–91.
  • Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics. 2004; 5: 243–72.
  • Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002; 54: 1271–94.
  • Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005; 33: 884–7.
  • Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol. 2002; 62: 162–72.
  • Schuetz EG, Schuetz JD, Grogan WM, Naray-Fejes-Toth A, Fejes-Toth G, Raucy J. Expression of cytochrome P450 3A in amphibian, rat, and human kidney. Arch Biochem Biophys. 1992; 294: 206–14.
  • Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Ann Rev Pharmacol Toxicol. 1999; 39: 1–17.
  • Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001; 11: 773–9.
  • Fukushima-Uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat. 2004; 23: 100.
  • Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol. 2004; 369: 89–104.
  • Bigos KL, Bies RR, Pollock BG, Lowy JJ, Zhang F, Weinberger DR. Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Mol Psychiatr. 2011; 16: 620–5.
  • Ota VK, Spindola LN, Gadelha A, dos Santos Filho AF, Santoro ML, Christofolini DM. DRD1 rs4532 polymorphism: a potential pharmacogenomic marker for treatment response to antipsychotic drugs. Schizophr Res. 2012; 142: 206–8.
  • Hwang R, Zai C, Tiwari A, Müller DJ, Arranz MJ, Morris AG. Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. Pharmacogenomics J. 2010; 10: 200–18.
  • Hwang R, Tiwari AK, Zai CC, Felsky D, Remington E, Wallace T. Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia: replication and exploration. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 37: 62–75.
  • Miura I, Takeuchi S, Katsumi A, Mori A, Kanno K, Yang Q. Effects of aripiprazole and the Taq1A polymorphism in the dopamine D2 receptor gene on the clinical response and plasma monoamine metabolites level during the acute phase of schizophrenia. J Clin Psychopharmacol. 2012; 32: 106–9.
  • Kwon JS, Kim E, Kang DH, Choi JS, Yu KS, Jang IJ. Taq1A polymorphism in the dopamine D2 receptor gene as a predictor of clinical response to aripiprazole. Eur Neuropsychopharmacol. 2008; 18: 897–907.
  • Ikeda M, Yamanouchi Y, Kinoshita Y, Kitajima T, Yoshimura R, Hashimoto S. Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics. 2008; 9: 1437–43.
  • Arranz MJ, Munro J, Sham P, Kirov G, Murray RM, Collier DA. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res. 1998; 32: 93–9.
  • Serretti A, Drago A, De Ronchi D. HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr Med Chem. 2007; 14: 2053–69.
  • Aghajanian GK, Marek GJ. Serotonin and hallucinogens. Neuropsychopharmacology. 1999; 21: 16S–23S.
  • Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatr. 1998; 44: 1099–117.
  • Müller DJ, De Luca V, Kennedy JL. Overview: towards individualized treatment in schizophrenia. Drug Dev Res. 2003; 60: 75–94.
  • Wei Z, Wang L, Xuan J, Che R, Du J, Qin S. Association analysis of serotonin receptor 7 gene (HTR7) and risperidone response in Chinese schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33: 547–51.
  • Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatr. 2009; 14: 804–19.
  • Kongsamut S, Roehr JE, Cai J, Hartman HB, Weissensee P, Kerman LL. Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol. 1996; 317: 417–23.
  • Mössner R, Schuhmacher A, Wagner M, Lennertz L, Steinbrecher A, Quednow BB. The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatr Clin Neurosci. 2012; 262: 193–7.
  • Zhang J, Wu X, Diao F, Gan Z, Zhong Z, Wei Q. Association analysis of ZNF804A (zinc finger protein 804A) rs1344706 with therapeutic response to atypical antipsychotics in first-episode Chinese patients with schizophrenia. Compr Psychiatry. 2012; 53: 1044–8.
  • Lett TA, Zai CC, Tiwari AK, Shaikh SA, Likhodi O, Kennedy JL. ANK3, CACNA1C and ZNF804A gene variants in bipolar disorders and psychosis subphenotype. World J Biol Psychiatry. 2011; 12: 392–7.
  • O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008; 40: 1053–5.
  • Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO. Replication of association between schizophrenia and ZNF804A in the Irish Case-Control Study of Schizophrenia sample. Mol Psychiatry. 2010; 15: 29–37.
  • Steinberg S, Mors O, Borglum AD, Gustafsson O, Werge T, Mortensen PB. Expanding the range of ZNF804A variants conferring risk of psychosis. Mol Psychiatry. 2011; 16: 59–66.
  • Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011; 16: 429–41.
  • Zai GC, Zai CC, Chowdhury NI, Tiwari AK, Souza RP, Lieberman JA. The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 39: 96–101.
  • Zhang JP, Lencz T, Geisler S, DeRosse P, Bromet EJ, Malhotra AK. Genetic variation in BDNF is associated with antipsychotic treatment resistance in patients with schizophrenia. Schizophr Res. 2013; 146: 285–8.
  • Xu M, Li S, Xing Q, Gao R, Feng G, Lin Z. Genetic variants in the BDNF gene and therapeutic response to risperidone in schizophrenia patients: a pharmacogenetic study. Eur J Hum Genet. 2010; 18: 707–12.
  • Rosenhagen MC, Uhr M. The clinical impact of ABCB1 polymorphisms on the treatment of psychiatric diseases. Curr Pharm Des. 2011; 17: 2843–51.
  • Lee ST, Ryu S, Kim SR, Kim MJ, Kim S, Kim JW. Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response. J Clin Psychopharmacol. 2012; 32: 441–8.
  • Vijayan NN, Mathew A, Balan S, Natarajan C, Nair CM, Allencherry PM. Antipsychotic drug dosage and therapeutic response in schizophrenia is influenced by ABCB1 genotypes: a study from a south Indian perspective. Pharmacogenomics. 2012; 13: 1119–27.
  • Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L. Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res. 2008; 42: 89–97.
  • Xing Q, Gao R, Li H, Feng G, Xu M, Duan S. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics. 2006; 7: 987–93.
  • Crisafulli C, Chiesa A, Han C, Lee SJ, Park MH, Balzarro B. Case-control association study for 10 genes in patients with schizophrenia: influence of 5HTR1A variation rs10042486 on schizophrenia and response to antipsychotics. Eur Arch Psychiatr Clin Neurosci. 2012; 262: 199–205.
  • Souza RP, Meltzer HY, Lieberman JA, Le Foll B, Kennedy JL. Influence of neurexin 1 (NRXN1) polymorphisms in clozapine response. Hum Psychopharmacol. 2010; 25: 582–5. [PubMed Abstract].
  • Lett TA, Tiwari AK, Meltzer HY, Lieberman JA, Potkin SG, Voineskos AN. The putative functional rs1045881 marker of neurexin-1 in schizophrenia and clozapine response. Schizophr Res. 2011; 132: 121–4.
  • Spellmann I, Rujescu D, Musil R, Mayr A, Giegling I, Genius J. Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients. J Psychiatr Res. 2011; 45: 234–41.
  • Arana GW. An overview of side effects caused by typical antipsychotics. J Clin Psychiatry. 2000; 61: 5–11. [PubMed Abstract].
  • Gershanik OS, Gómez Arévalo GJ. Typical and atypical neuroleptics. Handb Clin Neurol. 2011; 100: 579–99. [PubMed Abstract].
  • Hwang R, Shinkai T, De Luca V, Müller DJ, Ni X, Macciardi F. Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology. 2005; 181: 179–87.
  • Zai CC, Hwang RW, De Luca V, Müller DJ, King N, Zai GC. Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. Int J Neuropsychopharmacol. 2007; 10: 639–51.
  • Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997; 7: 479–84.
  • Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry. 1991; 48: 648–54.
  • Zai CC, De Luca V, Hwang RW, Voineskos A, Müller DJ, Remington G. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007; 12: 794–5.
  • Zai CC, Tiwari AK, De Luca V, Müller DJ, Bulgin N, Hwang R. Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. Eur Neuropsychopharmacol. 2009; 19: 317–28.
  • Koola MM, Tsapakis EM, Wright P, Smith S, Kerwin Rip RW, Nugent KL. Association of tardive dyskinesia with variation in CYP2D6: is there a role for active metabolites?. J Psychopharmacol. 2014; 28: 665–70.
  • Fleeman N, McLeod C, Bagust A, Beale S, Boland A, Dundar Y. The clinical effectiveness and cost-effectiveness of testing for cytochrome P450 polymorphisms in patients with schizophrenia treated with antipsychotics: a systematic review and economic evaluation. Health Technol Assess. 2010; 14 1–157, iii.
  • Müller DJ, Shinkai T, De Luca V, Kennedy JL. Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J. 2004; 4: 77–87.
  • Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics. 2005; 15: 151–8.
  • Lohmann PL, Bagli M, Krauss H, Müller DJ, Schulze TG, Fangerau H. CYP2D6 polymorphism and tardive dyskinesia in schizophrenic patients. Pharmacopsychiatry. 2003; 36: 73–8.
  • Bakker PR, van Harten PN, van Os J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry. 2008; 13: 544–56.
  • Zhang XY, Zhang WF, Zhou DF, Chen da C, Xiu MH, Wu HR. Brain-derived neurotrophic factor levels and its Val66Met gene polymorphism predict tardive dyskinesia treatment response to Ginkgo biloba. Biol Psychiatry. 2012; 72: 700–6.
  • Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M. Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology. 2010; 35: 1155–64.
  • Greenbaum L, Alkelai A, Zozulinsky P, Kohn Y, Lerer B. Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. Pharmacogenomics J. 2012; 12: 513–20.
  • Ucok A, Gaebel W. Side effects of atypical antipsychotics: a brief overview. World Psychiatry. 2008; 7: 58–62. [PubMed Abstract] [PubMed CentralFull Text].
  • Nandra KS, Agius M. The differences between typical and atypical antipsychotics: the effects on neurogenesis. Psychiatr Danub. 2012; 24: S95–9. [PubMed Abstract].
  • Ujike H, Nomura A, Morita Y, Morio A, Okahisa Y, Kotaka T. Multiple genetic factors in olanzapine-induced weight gain in schizophrenia patients: a cohort study. J Clin Psychiatry. 2008; 69: 1416–22.
  • Mou XD, Zhang ZJ, Yao ZJ, Liu W, Zhang XR, Shi JB. No association of -1438G/A polymorphism in promoter region of 5-HT2A receptor gene with antipsychotic agent-induced weight gain]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005; 22: 575–6. [PubMed Abstract].
  • Müller DJ, Kennedy JL. Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics. 2006; 7: 863–87.
  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995; 374: 542–6.
  • Bonhaus DW, Weinhardt KK, Taylor M, DeSouza A, McNeeley PM, Szczepanski K. RS-102221: a novel high affinity and selective, 5-HT2C receptor antagonist. Neuropharmacology. 1997; 36: 621–9.
  • Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry. 2012; 17: 242–66.
  • Malhotra AK, Correll CU, Chowdhury NI, Müller DJ, Gregersen PK, Lee AT. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry. 2012; 69: 904–12.
  • Czerwensky F, Leucht S, Steimer W. MC4R rs489693: a clinical risk factor for second generation antipsychotic-related weight gain?. Int J Neuropsychopharmacology. 2013; 16: 2103–9.
  • Nurmi EL, Spilman SL, Whelan F, Scahill LL, Aman MG, McDougle CJ. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Transl Psychiatry. 2013; 3: e274.
  • Lencz T, Robinson DG, Napolitano B, Sevy S, Kane JM, Goldman D. DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode schizophrenia. Pharmacogenet Genomics. 2010; 20: 569–72.
  • Müller DJ, Zai CC, Sicard M, Remington E, Souza RP, Tiwari AK. Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain. Pharmacogenomics J. 2012; 12: 156–64.
  • Kuzman MR, Müller DJ. Association of the MTHFR gene with antipsychotic-induced metabolic abnormalities in patients with schizophrenia. Pharmacogenomics. 2012; 13: 843–6.
  • Ellingrod VL, Miller DD, Taylor SF, Moline J, Holman T, Kerr J. Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr Res. 2008; 98: 47–54.
  • van Winkel R, Moons T, Peerbooms O, Rutten B, Peuskens J, Claes S. MTHFR genotype and differential evolution of metabolic parameters after initiation of a second generation antipsychotic: an observational study. Int Clin Psychopharmacol. 2010; 25: 270–6.
  • van Winkel R, Rutten BP, Peerbooms O, Peuskens J, van Os J, De Hert M. MTHFR and risk of metabolic syndrome in patients with schizophrenia. Schizophr Res. 2010; 121: 193–8.
  • Latimer E, Wynant W, Clark R, Malla A, Moodie E, Tamblyn R. Underprescribing of clozapine and unexplained variation in use across hospitals and regions in the Canadian province of Quebec. Clin Schizophr Relat Psychoses. 2013; 7: 33–41.
  • Lahdelma L, Appelberg B. Clozapine-induced agranulocytosis in Finland, 1982–2007: long-term monitoring of patients is still warranted. J Clin Psychiatry. 2012; 73: 837–42.
  • Chowdhury NI, Remington G, Kennedy JL. Genetics of antipsychotic-induced side effects and agranulocytosis. Curr Psychiatry Rep. 2011; 13: 156–65.
  • Athanasiou MC, Dettling M, Cascorbi I, Mosyagin I, Salisbury BA, Pierz KA. Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry. 2011; 72: 458–63.
  • Roke Y, Buitelaar JK, Boot AM, Tenback D, van Harten PN. Risk of hyperprolactinemia and sexual side effects in males 10–20 years old diagnosed with autism spectrum disorders or disruptive behavior disorder and treated with risperidone. J Child Adolesc Psychopharmacol. 2012; 22: 432–9.
  • Schmidt HM, Hagen M, Kriston L, Soares-Weiser K, Maayan N, Berner MM. Management of sexual dysfunction due to antipsychotic drug therapy. Cochrane Database Syst Rev. 2012; 11: CD003546. [PubMed Abstract].
  • Peluso MJ, Lewis SW, Barnes TR, Jones PB. Non-neurological and metabolic side effects in the Cost Utility of the Latest Antipsychotics in Schizophrenia Randomised Controlled Trial (CUtLASS-1). Schizophr Res. 2013; 144: 80–6.
  • Park YW, Kim Y, Lee JH. Antipsychotic-induced sexual dysfunction and its management. World J Mens Health. 2012; 30: 153–9.
  • Zhang XR, Zhang ZJ, Zhu RX, Yuan YG, Jenkins TA, Reynolds GP. Sexual dysfunction in male schizophrenia: influence of antipsychotic drugs, prolactin and polymorphisms of the dopamine D2 receptor genes. Pharmacogenomics. 2011; 12: 1127–36.
  • Mesa N, de la Oliva J, Bagney A, Jimenez-Arriero MA, Rodriguez-Jimenez R. Dopamine partial agonism in antipsychotic-induced sexual dysfunction. Actas Esp Psiquiatr. 2013; 41: 130–2. [PubMed Abstract].
  • van der Baan F. Personalized medicine: pharmacogenetic testing in drug development and clinical practice. 2012; Netherlands: Utrecht University.
  • Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S. Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. Pharmacogenomics. 2010; 11: 1149–67.
  • AmpliChip CYP450 Test: Roche Molecular Systems Inc. Available from: http://molecular.roche.com/assays/Pages/AmpliChipCYP450Test.aspx [cited 26 November 2013]..
  • Dunbar L, Butler R, Wheeler A, Pulford J, Miles W, Sheridan J. Clinician experiences of employing the AmpliChip(R) CYP450 test in routine psychiatric practice. J Psychopharmacol. 2012; 26: 390–7.
  • Swen JJ, van der Straaten T, Wessels JA, Bouvy ML, Vlassak EE, Assendelft WJ. Feasibility of pharmacy-initiated pharmacogenetic screening for CYP2D6 and CYP2C19. Eur J Clin Pharmacol. 2012; 68: 363–70.
  • DMET™ Plus Solution: Affymetrix, Inc. Available from: http://www.affymetrix.com/catalog/131412/AFFY/DMET-Plus-Solution#1_1 [cited 26 November 2013]..
  • PharmaADME.org: Montreal Heart Institute Pharmacogenomics Centre. Available from: http://www.pharmaadme.org/joomla/ [cited 26 November 2013]..
  • de Leon J, Arranz MJ, Ruaño G. Pharmacogenetic testing in psychiatry: a review of features and clinical realities. Clin Lab Med. 2008; 28: 599–617.
  • Winner J, Allen JD, Altar CA, Spahic-Mihajlovic A. Psychiatric pharmacogenomics predicts health resource utilization of outpatients with anxiety and depression. Transl Psychiatry. 2013; 3: e242.
  • Hall-Flavin DK, Winner JG, Allen JD, Carhart JM, Proctor B, Snyder KA. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharmacogenet Genomics. 2013; 23: 535–48.
  • The Science Behind the Genecept™ Assay: Genomind. Available from: http://www.genomind.com/products/science-behindthe-test [cited 26 November 2013]..
  • Genomas I. Laboratory of personalized health (LPH): delivering personalized medicine in real-time. 2014. Available from: http://www.genomas.com/lph/index.php [cited 18 March 2014]..
  • Genomas I. HILOmet PhyzioType system. 2014. Available from: http://www.genomas.net/phyziotype-hilomet.php [cited 20 March 2014]..
  • Kennedy JL, Voudouris NC. Incorporating psychiatric pharmacogenetics into family practice. Pharmacogenomics. 2013; 14: 1121–4.
  • Mrazek DA, Lerman C. Facilitating clinical implementation of pharmacogenomics. JAMA. 2011; 306: 304–5.
  • Haga SB, Tindall G, O'Daniel JM. Public perspectives about pharmacogenetic testing and managing ancillary findings. Genet Test Mol Biomarkers. 2012; 16: 193–7.
  • Haga SB, Tindall G, O'Daniel JM. Professional perspectives about pharmacogenetic testing and managing ancillary findings. Genet Test Mol Biomarkers. 2012; 16: 21–4.
  • Lanktree MB, Zai G, Vanderbeek LE, Giuffra DE, Smithson DS, Kipp LB. Positive perception of pharmacogenetic testing for psychotropic medications. Hum Psychopharmacol. 2014; 29: 287–91.