96
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A numerical simulation of an atmospheric vortex street

&
Pages 555-566 | Received 01 Dec 1981, Accepted 23 Feb 1982, Published online: 15 Dec 2016

References

  • Abernathy, F. H. and Kronauer, R. E. 1962. The formation of vortex streets. J. Fluid. Mech. 13, 1–20.
  • Agee, E. M. and Lomax, F. E. 1978. Structure of the mixed layer and inversion layer associated with patterns of mesoscale cellular convection during AMTEX 75. J. Atmos. Sci. 35, 2281–2301.
  • Anthes, R. A., Keyser, D. and Deardorff, J. W. 1982. Further considerations on modeling the sea breeze with a mixed-layer model. To appear in Mon. Wea. Rev. 110.
  • Anthes. R. A., Seaman, N. L. and Warner, T. T. 1980. Comparisons of numerical simulations of the planetary boundary layer by a mixed-layer model and multi-level model. Mon. Wea. Rev. 108, 365–376.
  • Arakawa, A. and Lamb, V. R. 1977. Computational design of the basic dynamical process of the UCLA general circulation model. In Methods of Computa-tional Physics, Volume I 7: General circulation models of the atmosphere (ed. J. Chang,). New York: Aca-demic Press, 174–265.
  • Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. London: Cambridge University Press, 615 pp.
  • Chen, J. H. 1973. Numerical boundary conditions and computational modes. J. Comp. Phys. 13, 522–535.
  • Chopra, K. P. and Hubert, L. F. 1964. Karman vortex streets in the Earth's atmosphere. Nature 203, 1341–1343.
  • Chopra, K. P. 1965. Mesoscale eddies in wake of islands. J. Atmos. Sci. 22, 652–657.
  • Crowley, W. P. 1969. A global numerical ocean model: partl. J. Comp. Phys. 3, 111-147.
  • Deardorff, J. W. 1973. Three-dimensional numerical modeling of the planetary boundary layer. In Work-shop on Micrometeorology (ed. D. A. Haugen). Boston: American Meteorological Society, 271–311.
  • Deardorff, J. W. and Willis, G. E. 1975. A parameter-ization of diffusion into the mixed layer. J. Appl. Meteorol. 14, 1451–1458.
  • Fromm, J. and Harlow, H. 1963. Numerical solution of the problem of vortex street development. Phys. Fluids 6,975–981.
  • Gaster, M. 1969. Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 38, 565–576.
  • Caster, M. 1971. Vortex shedding from circular cylin-ders at low Reynolds numbers. J. Fluid Mech. 46, 749–756.
  • Gerrard, J. H. 1966. The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25,401–413.
  • Haltiner, G. J. 1971. Numerical Weather Prediction. New York: John Wiley & Sons, Inc., 317 pp.
  • Hirota, I. and Miyakoda, K. 1965. Numerical simulation of Kirman vortex street behind a circular cylinder. J. Meteorol. Soc. Japan, Ser. 11 43, 30–41.
  • Jensen, N. O. and Agee, E. M 1978. Vortex cloud street during AMTEX 75. Tellus 30, 517–523.
  • Karman, Th. von 1911. Ober den mechanisms des widerstandes den em n bewegter körber in einer flüssigkeit erfährt. Gottingen Nachrichten Math.-Phys. 509–517.
  • Keyser, D. and Anthes, R. A. 1977. The applicability of a mixed-layer model of the planetary boundary layer to real-data forecasting. Mon. Wea. Rev. 105. 1351–1371.
  • Klemp, J. B. and Lilly, D. K. 1978. Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35, 78–107.
  • Klemp, J. B. and Wilhelmson, R. B. 1978. The simulation of three-dimensional convective storm dynamics. J. A imos. Sci. 35, 1070–1096.
  • Kovisznay, L. S. G. 1949. Hot-wire investigation of the wake behind circular cylinders at low Reynolds numbers. Proc. Roy. Soc. (London), Ser. A 198, 174–190.
  • Lamb, H. 1932. Hydrodynamics, 6th ed. London: Cambridge University Press, 738 pp.
  • Lavoie, R. L. 1972. A mesoscale model of lake-effect storms. J. Atmos. Sci. 29, 1025–1040.
  • Lavoie, R. L. 1974. A numerical model of trade wind weather on Oahu. Mon. Wea. Rev. 102, 630–637.
  • Leith, C. C. 1969. Two dimensional eddy viscosity coefficients. In Proceedings of the WMO-IUGG Symposium on Numerical Weather Prediction, Tokyo, Nov. 1968, Sec. 1, 41-44.
  • Lilly, D. K. 1968. Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteorol. Soc. 94, 292–309.
  • Lyons, W. A. and Fujita, T. 1968. Mesoscale motions in oceanic stratus as revealed by satellite data. Mon. Wea. Rev. 96, 304–314.
  • Matsuno, T. 1966. Numerical integrations of the primitive equations by a simulated backward dif-ference method. J. Meteorol. Soc. Japan, Ser. II 44, 76–84.
  • Mesinger, F. and Arakawa, A. 1976. Numerical methods used in atmospheric models, Vol. I. GARP Publi-cation Series, No. 17. Geneva: World Meteorological Organization/ICSU, 64 pp.
  • Miyakoda, K. and Rosati, A. 1977. One-way nested grid models: the interface condition and numerical accuracy. Mon. Wea. Rev. 105, 1092–1107.
  • Nitta, T. 1964. On the reflective computational wave caused by the outflow boundary condition. J. Meteorol. Soc. Japan, Ser. 11 42, 274–276.
  • Orlanski, I. 1976. A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys. 21, 251–269.
  • Overland, J. E., Hitchman, M. H. and Han, Y.-J. 1979. A regional surface wind model for mountainous coastal areas. NOAA Tech. Repl., ERL 407-PMEL 32, U.S. Department of Commerce. (Available from Superin-tendent of Documents, USGPO, Washington, DC 20402, USA. Order by SD Stock No. 003-017-00461-9.)
  • Pao, H. P. and Kao, T. W. 1976. On vortex trails over ocean islands. Atmos. Sci. (The Meteorological Society of the Republic of China) 3, 28–38.
  • Papailou, D. D. and Lykoudis, P. S. 1974. Turbulent vortex streets and the entrainment mechanism of the turbulent wake. J. Fluid Mech. 62, 11-31.
  • Price, J. F., Mooers, C. N. K. and Van Leer, J. C. 1978. Observation and simulation of storm-induced mixed-layer deepening. J. Phys. Oceanog. 8, 582–599.
  • Sadourny, R. 1975. The dynamics of finite-difference models of the shallow water equations. J. Atmos. Sci. 31, 680–689.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Wea. Rev. 91. 99–164.
  • Sundstrom, A. and Elvius, T. 1979. Computational problems related to limited-area modeling. In “Numerical Methods Used in Atmospheric Models, Volume 2,” (Joint Organizing Committee, ed.). GARP Publication Series, No. 17. Geneva: World Meteoro-logical Organization/I C SU, 379–416.
  • Thomson, R. E., Gower, J. F. R. and Bowker, N. W. 1977. Vortex street formation in the wake of the Aleutian Islands. Mon. Wea. Rev. 105, 873–884.
  • Trischka, J. W. 1980. Cone models of mountain peaks associated with atmospheric vortex streets. Tellus 31, 365–375.
  • Tsuchiya, K. 1969. The clouds with the shape of Kirmin vortex street in the wake of Cheju Island, Korea. J. Meteorol. Soc. Japan, Ser. 11 47,457–464.
  • Wyngaard, J. C., Pennell, W. T. Lenschow, D. H. and LeMone, M. A. 1978. The temperature-humidity covariance budget in the convective boundary layer. J. Atmos. Sci. 35,47–58.
  • Zimmerman, L. I. 1969. Atmospheric wake phenomena near the Canary Islands. J. Appl. Meteorol. 8, 896–907.