59
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The effect of parameterized ice microphysics on the simulation of vortex circulation with a mesoscale hydrostatic model

Pages 132-147 | Received 30 Nov 1987, Accepted 26 Apr 1988, Published online: 15 Dec 2016

References

  • Anthes, R. A. and Warner, T. T. 1978. The development of mesoscale models suitable for air pollution and other meteorological studies. Mon. Wea. Rev. 106, 1045–1078.
  • Anthes, R. A., Hsie, E.-Y. and Kuo, Y.-H. 1987 . Description of the Penn State/NCAR mesoscale model version 4 (MM4). NCAR Tech. Note, NCAR/TN-282, 66 pp.
  • Anthes, R. A. and Keyser, D. 1979. Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev. 107, 963–984.
  • Bergeron, T. 1935. On the physics of cloud and precipitation. Proc. 5th Assembly IUGG, Lisbon, 156–178.
  • Bosart, L. R. and Sanders, F. 1981. The Johnstown flood of July 1977: A long-lived convective storm. J. Atmos. Sci. 38, 1616–1642.
  • Brown, J. M. 1979. Mesoscale unsaturated downdraft driven by rainfall evaporation: A numerical study. J. Atmos. Sci. 36, 313–338.
  • Chong, M., Amayenc, P., Scialom, G. and Testud, J. 1987. A tropical squall line observed during the COPT 81 experiment in West Africal Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev. 115, 670–694.
  • Churchill, D. D. and Houze, R. A., Jr. 1984. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci. 41, 933–960.
  • Cotton, W. R., Stephens, M. A., Nehrkorn, T. and Tripoli, G. J. 1982. The Colorado State University three-dimensional cloud/mesoscale model-1982. Part II: An ice phase parameterization. J. Rech. Atmos. 16, 295–320.
  • Fletcher, N. H. 1962. The physics of rainclouds. Cambridge: Univ. Press, 386 pp.
  • Fritsch, J. M. and Chappell, C. F. 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I : Convective parameterization. J. Atmos. Sci. 37, 1722–1733.
  • Gyakum, J. R. 1983. On the evolution of the QE-II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev. III, 1156-1173.
  • Hoxit, L. R., Maddox, R. A., Chappell, C. F., Zuckerberg, F. L., Mogil, H. M., Jones, I., Greene, D. R., Wile, R. E. and Scofield, R. A. 1978. Meteorological analysis of the Johnstown, Pennsylvania, flash flood, 19-20 July 1977. NOAA Tech. Rep. ERL 40 I-APCL43, 71 pp.
  • Hsie, E.-Y., Anthes, R. A. and Keyser, D. 1984. Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci. 41, 2581–2594.
  • Houze, R. A., Jr. 1977. Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev. 105, 1540–1567.
  • Johnson, R. H. 1986. The development of organized mesoscale circulations within Oklahoma-Kansas Pre-STORM convective systems. Preprints, Inter. Conf on Monsoon and Mesoscale Meteor., Taiwan, 100–104.
  • Kalb, M. W. 1987. The role of convective parameterization in the simulation of a Gulf coast precipitation system. Mon. Wea. Rev. 115, 214–234.
  • Kasahara, A. 1961. A numerical experiment on the development of a tropical cyclone. J. Meteor. 18, 259–282.
  • Leary, C. A. 1980. Temperature and humidity profiles in mesoscale unsaturated downdrafts. J. Atmos. Sci. 37, 1005–1012.
  • Leary, C. A. and Houze, R. A., Jr. 1979. Melting and evaporation of hydrometers in precipitation from anvil clouds of deep tropical convection. J. Atmos. Sci. 36, 669–679.
  • Leary, C. A. and Rappaport, E. N. 1987. The life cycle and internal structure of a mesoscale convective complex. Mon. Wea. Rev. 115, 1503–1527.
  • Lin, Y.-L., Farley, R. D. and Orville, H. D. 1983. Bulk parameterization of the snow field in a cloud model. J. Climate and Appl. Meteor. 22, 1065–1092.
  • Lord, S. J., Willoughby, H. E. and Piotrowicz, J. M. 1984. Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci. 41, 2836–2848.
  • Maddox, R. A. 1980. Mesoscale convective complexes. Bull. Amer. Meteor. Soc. 61, 1374–1387.
  • Maddox, R. A. 1983. Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev. 111, 1475–1493.
  • Molinari, J. and Dudek, M. 1986. Implicit versus explicit convective heating in numerical weather prediction models. Mon. Wea. Rev. 114, 1822–1381.
  • Ogura, Y. and Liou, M.-T. 1980. The structure of a midlatitude squall line: A case study. J. Atmos. Sci. 37, 553–567.
  • Orville, H. D., Kopp, F. J. and Myers, C. G. 1975. The dynamics and thermodynamics of precipitation loading. Pure App!. Geophys. 113, 983–1004.
  • Orville, H. D. and Kopp, F. J. 1977. Numerical simulation of the history of a hailstorm. J. Atmos. Sci. 34,1596–1618.
  • Rockwood, A. A., Bartels, D. L. and Maddox, R. A. 1984. Precipitation characteristics of a dual mesoscale convective complex. NOAA Tech. Rep. ERL ESG- 6, 50 pp.
  • Ross, B. B. and Orlanski, I. 1982. The evolution of an observed cold front. Part I: Numerical simulation. J. Atmos. Sci. 39, 296–327.
  • Rutledge, S. A. and Hobbs, P. V. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the "seeder-feeder"� process in warm-frontal rainbands. J. Atmos. Sci. 40, 1185–1206.
  • Rutledge, S. A. and Houze, R. A., Jr. 1987. A diagnostic modeling study of the trailing stratiforrn region of a midlatitude squall line. J. Atmos. Sci. 44, 2640–2656.
  • Sardie, J. M. and Warner, T. T. 1983. On the mechanism for the development of polar lows. J. Atmos. Sci. 40, 869–881.
  • Simpson, J., Simpson, R. H., Andrews, D. A. and Eaton, M. A. 1965. Experimental cumulus dynamics. Rev. Geophys. 3, 387–431.
  • Smull, B. F. and Houze, R. A., Jr. 1987. Dual-Doppler radar analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci. 44, 2128–2148.
  • Srivastava, R. C. 1987. A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci. 44,1752–1773.
  • Willoughby, H. E., Jin, H.-L., Lord, S. J. and Piotrowicz, J. M. 1984. Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic nu-merical model. J. Atmos. Sci. 41, 1169–1186.
  • Zhang, D.-L. and Anthes, R. A. 1982. A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. App!. Meteor. 21, 1 5943-1609.
  • Zhang, D.-L., Chang, H.-R., Seaman, N. L., Warner, T. T. and Fritsch, J. M. 1986. A two-way interactive nesting procedure with variable terrain resolution. Mon. Wea. Rev. 114, 1330–1339.
  • Zhang, D.-L. and Fritsch, J. M. 1986a. Numerical simulation of the meso-/3 scale structure and evolution of the 1977 Johnstown floor. Part I: Model description and verification. J. Atmos. Sci. 43, 1913–1943.
  • Zhang, D.-L. and Fritsch. 1986b. A case study of the sensitivity of the numerical simulation of mesoscale convective systems to varying initial conditions. Mon. Wea. Rev. 114, 2418–2431.
  • Zhang, D.-L. and Fritsch, J. M. 1987. Numerical simulation of the meso-/3 scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex. J. Atmos. Sci. 44,2593–2612.
  • Zhang, D.-L., Hsie, E.-Y. and Moncrieff, M. W. 1988. A comparison of explicit and implicit predictions of convective and stratiforrn precipitating weather systems with a meso-fl scale numerical model. Quart. J. Roy. Meteor. Soc. 114, 31–60.
  • Zhang, D.-L. 1988. The roles of parameterized and grid-resolved convective schemes in the simulation of mesoscale precipitating weather systems. Preprint, eighth Conf. on Numer. Wea. Prediction, Amer. Meteor. Soc., 378–383.
  • Zipser, E. J. 1969. The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. App!. Meteor. 8, 799–814.
  • Zipser, E. J. 1977. Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev. 105, 1568–1589.