136
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Cloud albedo control by cloud-top entrainment

Pages 37-48 | Received 11 Dec 1989, Accepted 02 May 1990, Published online: 15 Dec 2016

References

  • Albrecht, B. A. and Barlow, R. A. 1989. Large-scale variability in marine stratocumulus clouds defined from simultaneous aircraft and satellite measurements. Extended Abstracts, FIRE Science Meeting, July 10-14, Monterey, CA, FIRE Project Office, NASA Langley Research Center, 10–13.
  • Albrecht, B. A., Randall, D. A. and Nicholls, S. 1988. Observations of marine stratocumulus clouds during FIRE. Bull. Amer. Meteorol. Soc. 69, 618–626.
  • Betts, A. K. 1982. Cloud thermodynamic models in saturation point coordinates. J. Atmos. Sci. 39, 2182–2191.
  • Betts, A. K. 1985. Mixing line analysis of clouds and cloudy boundary layers. J. Atmos. Sci. 42, 2751–2763.
  • Betts, A. K. and Albrecht, B. A. 1987. Conserved variable analysis of the convective boundary layer thermo-dynamic structure over the tropical oceans. J. Atmos. Sci. 44, 83–99.
  • Betts, A. K. and Ridgway, W. 1988. Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific. J. Atmos. Sci. 45, 522–536.
  • Betts, A. K. and Boers, R. 1990. A cloudiness transition in a marine boundary layer. J. Atmos. Sci. 00,000–000.
  • Chen, C. and Cotton, W. R. 1983. A one-dimensional simulation of the stratocumulus-topped mixed layer. Boundary-Layer Meteorol. 25, 289–321.
  • Coakley, J. A., Jr., Bernstein, R. L. and Durkee, P. A. 1987. Effect of ship-stack effluents on cloud reflectivity. Science 237, 1020–1022.
  • Coakley, J. A. and Snider, J. B. 1988. Dependence of marine stratocumulus reflectivities on liquid water paths. Extended Abstracts, FIRE Science Team Workshop, Vail, CO, July 7-11, FIRE Project Office, NASA Langley Research Center, 355–359.
  • Coakley, J. A. and Snider, J. B. 1989. Observed cloud reflectivities and liquid water paths—and update. Extended Abstracts, FIRE Science Meeting, Mon-terey, CA, July 10-14, FIRE Project Office, NASA Langley Research Center, 63–66.
  • Deardorff, J. W. 1980a. Cloud-top entrainment instability. J. Atmos. Sci. 37, 131–147.
  • Deardorff, J. W. 1980b. Stratocumulus-capped mixed-layers derived from a three-dimensional model. Boundary-Layer Meteorol. 18, 495–527.
  • Hanson, H. P. 1984a. On mixed-layer modeling of the stratocumulus-topped marine boundary layer. J. Atmos. Sci. 41, 1226–1234.
  • Hanson, H. P. 1984b. Stratocumulus instability recon-sidered: A search for physical mechanisms. Tellus 36A, 355–368.
  • Hanson, H. P. 1987a. Reinterpretation of cloud-topped mixed-layer entrainment closure. Tellus 39A, 215–225. Hanson, H. P. 1987b. Radiative/turbulent transfer interactions in layer clouds. J. Atmos. Sci. 44, 1287–1295. Hanson, H. P. 1990. Marine stratocumulus climatologies. Int. J. Climatol., in press.
  • Kloesel, K. A. 1989. The above-inversion moisture struc-ture observed during FIRE. Extended Abstracts, FIRE Science Meeting, July 10-14, Monterey, CA, FIRE Project Office, NASA Langley Research Center, 51–55.
  • Kloesel, K. A. and Albrecht, B. A. 1989. Low-level inver-sions over the tropical Pacific: Thermidynamic struc-ture of the boundary layer and the above-inversion moisture structure. Mon. Weath. Rev. 117, 87-101.
  • Lenschow, D. H., Paluch, I. R., Bandy, A. R., Pearson, Jr., R., Kawa, S. R., Weaver, C. J., Huebert, B. J., Kay, J. G., Thornton, D. C. and Driedger III, A. R. 1988. Dynamics and chemistry of marine stratocumulus (DYCOMS ) experiment. Bull. Amer. Meteor. Soc. 69, 1058–1067.
  • Lilly, D. K. 1968. Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc. 94, 292–309.
  • Moeng, C.-H. 1986. Large-eddy simulation of a stratus-topped boundary layer. Part 1: Structure and budgets. J. Atmos. Sci. 43, 2886–2900.
  • Nicholls, S. 1984. The dynamics of stratocumulus: Air-craft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteorol. Soc. 110, 783-820.
  • Nicholls, S. 1989. The structure of radiatively driven con-vection in stratocumulus. Quart. J. Roy. MeteoroL Soc. 115,487–511.
  • Oliver, D. A., Lewellen, W. S. and Williamson, G. G. 1978. The interaction between turbulent and radiative transport in the development of fog and low-level stratus. J. Atmos. Sci. 35, 301–316.
  • Randall, D. A. 1980. Conditional instability of the first kind, upside-down, J. Atmos. Sci. 37, 125-130.
  • Randall, D. A. 1984. Stratocumulus cloud deepening through entrainment. Tellus 36A, 446–457.
  • Schneider, S. H. 1972. Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci. 29, 1413–1422.
  • Schubert, W. A. 1976. Experiments with Lilly's cloud-topped mixed layer model. J. Atmos. Sci. 33, 436–446.
  • Schubert, W. H., Wakefield, J. S., Steiner, E. J. and Cox, S. K. 1979a. Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci. 36, 1286–1307.
  • Schubert, W. H., Wakefield, J. S., Steiner, E. J. and Cox, S. K. 1979b. Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci. 36, 1308–1324.
  • Schwiesow, R. L. 1987. The NCAR airborne infrared lidar system (NAILS), design and operation. NCAR Technical Note 291 + 1A, June, 1987, 38 pp.
  • Starr, D. O'C. 1987. A cirrus-cloud experiment: Intensive field observations planned for FIRE. Bull. Amer. MeteoroL Soc. 68, 119–124.
  • Turton, J. and Nicholls, S. 1987. A study of the dirunal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. MeteoroL Soc. 113, 969–1010.