57
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional simulation of frontal rainbands and conditional symmetric instability in the Eady-wave model

&
Pages 45-61 | Received 11 Aug 1993, Accepted 21 Feb 1994, Published online: 15 Dec 2016

References

  • Anthes, R. A., Hsie, E.-Y. and Kuo, Y.-H. 1987. Description of the Penn StateINCAR mesoscale model version 4 (MM4). NCAR Tech. Note, NCAR/TN- 282,66 pp.
  • Benard, P., Lafore, J.-P. and Redelsperger, J.-L. 1992. Nonhydrostatic simulation of frontogenesis in a moist atmosphere. Part II: Moist potential vorticity budget and wide rainbands. J.Atmos. Sc i. 49, 2218–2235.
  • Bennetts, D. A. and Hoskins, B. J. 1979. Conditional symmetric instability, a possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc. 105, 945–962.
  • Bennetts, D. A. and Ryder, P. 1984. A study of mesoscale convective bands behind cold fronts. Part I: Mesoscale organization. Quart. J. Roy. Meteor. Soc. 110, 121–145.
  • Browning, K. A. and Harrold, T. W. 1969. Air motion and precipitation growth in a wave depression. Q. J. Roy. Meteor. Soc. 95, 288–309.
  • Browning, K. A. and Mason, B. J. 1981. Air motion and precipitation growth in frontal systems. Pure and Appl. Geophys. 119, 577–593.
  • Cho, H.-R. and Chan, D. S. 1987. Mesoscale atmospheric dynamics and modeling of rainfall fields. J. Geophys. Res. 92, 9687–9692.
  • Cooper, I. M., Thorpe, A. J. and Bishop, C. H. 1992. The role of diffusive effects on potential vorticity at fronts. Quart. J. Roy. Meteor. Soc. 118, 629–647.
  • Dudhia, J. 1989. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sc i. 46, 3077–3107.
  • Emanuel, K. A. 1979. Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluid. J. A tmos. Sc i. 36, 2425–2449.
  • Emanuel, K. A. 1983. On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Re v. 111, 2016–2033.
  • Emanuel, K. A. 1985. Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sc i. 42, 1062–1071.
  • Fritsch, J. M. and Chappell, C. F. 1980. Numerical prediction of convectively driven mesoscalepressure systems. Part I: Convective parameterization. J. Atmos. Sc i 37,1722–1733.
  • Herzegh, P. H. and Hobbs, P. V. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones (II). Warm-frontal clouds. J. Atmos. Sc i. 37,597–611.
  • Hobbs, P. V. 1978. Organization and structure of clouds and precipitation on the mesoscale andmicroscale in cyclonic storms. Rev. Geophys. Space Phys. 16, 741–755.
  • Hobbs, P. V., Matejka, T. J., Herzegh, P. H., LocateIli, J. D. and Houze, R. A., Jr. 1980. Themesoscale and microscale structure and organization of clouds and precipitation in midlatitudecyclones. I: A case study of a cold front. J. Atmos. Sc i. 37, 568–596.
  • Hoskins, B. J. and Bretherton, F. 1972. Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sc i. 29, 11–37.
  • Hoskins, B. J., Neto, E. C. and Cho, H.-R. 1984. The formation of multiple fronts. Quart. J.R. Meteor. Soc. 110, 881–896.
  • Houze, R. A., Jr., Hobbs, P. V., Biswas, K. R. and Davis, W. M. 1976. Mesoscale rainbands in extratropical cyclones. Mon. Wea. Re v. 104, 868–878.
  • Houze, R. A., Jr., Rutledge, S. A., Matejka, T. J. and Hobbs, P. V. 1981. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motion and precipitation growth in a warm-frontal rainband. J. Atmos. Sc i. 38, 639–649.
  • Hsie, E.-Y., Anthes, R. A. and Keyser, D. 1984. Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sc i. 41, 2581–2594.
  • Jones, S. C. and Thorpe, A. J. 1992. The three-dimensional nature of “symmetric” instability. Q. J. R. Meteor. Soc. 118, 227–258.
  • Keyser, D. 1981. Frontogenesis in the planetary boundary layer of an amplifying, two-dimensional baroclinic wave. PhD thesis, The Penn. State University, 285 pp.
  • Keyser, D. and Anthes, R. A. 1982. The influence of planetary boundary layer physics on frontal structure in the Hoskins-Bretherton horizontal shear model. J. Atmos. Sc i. 39, 1783–1802.
  • Knight, D. J. and Hobbs, P. V. 1988. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XV: A numerical modeling study of frontogenesis and cold-frontal rainbands. J. Atmos. Sc i. 45, 915–930.
  • Lord, S. J., Willoughby, H. E. and Piotrowicz, J. M. 1984. Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sc i 41, 2836–2848.
  • Matejka, T. J., Houze, R. A., Jr. and Hobbs, P. V. 1980. Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Q. J. Roy. Meteor. 106, 29–56.
  • Pielke, R. A. 1974. A comparison of three-dimensional and two-dimensional numerical predictions of sea breezes. J. Atmos. Sc i. 31,1577–1585.
  • Reeder, M. J. and Smith, R. K. 1986. A comparison between frontogenesis in the two-dimensionalEady model of baroclinic instability and summertime cold fronts in the Australian region. Quart. J. Roy. Meteor. Soc. 112, 293–313.
  • Reuter, G. W. and Yau, M. K. 1990. Observations of slantwise convective instability in winter cyclones. Mon. Wea. Re v. 118, 447–458.
  • Roux, F., Marécal, V. and Hauser, D. 1993. The 12/13 January 1988 narrow cold-frontal rainband observed during MFDP/FRONTS 87. Part I: Kinematics and thermodynamics. J. Atmos. Sc i. 50, 951–974.
  • Seitter, K. L. and Kuo, H.-L. 1983. The dynamical structure of squall-line type thunderstorms. J. Atmos. Sc i. 40, 2831–2854.
  • Snook, J. S. 1992. Current techniques for real-time evaluation of conditional symmetric instability. Weather & Forecasting 7, 430–439.
  • Sun, W.-Y. 1984. Rainbands and symmetric instability. J. Atmos. Sc i. 41, 3412–3426.
  • Thorpe, A. J. and Emanuel, K. A. 1985. Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sc i. 42, 1809–1824.
  • Thorpe, A. J. and Rotunno, R. 1989. Nonlinear aspects of symmetric instability. J. Atmos. Sc i. 46, 1285–1299.
  • Thorpe, A. J., Miller, M. J. and Moncrieff, M. W. 1982. Two-dimensional convection in nonconstant shear: a model of midlatitude squall line. Q. J. Roy. Meteor. Soc. 108, 739–762.
  • Xu, Q. 1986. Conditional symmetric instability and mesoscale rainbands. Quart. J. Roy. Meteor. Soc. 112,315–334.
  • Zhang, D.-L. 1989. The effect of parameterized ice microphysics on the simulation of vortex circulation with a mesoscale hydrostatic model. Tellus 41A, 132–147.
  • Zhang, D.-L. and Anthes, R. A. 1982. A high-resolution model of the planetary boundary layer, sensitivity tests and comparisons with SESAME-79 data. J. AppL Meteor. 21, 1594–1609.
  • Zhang, D.-L., Chang, H.-R., Seaman, N. L., Warner, T. T. and Fritsch, J. M. 1986. A two-way interactive nesting procedure with variable terrain resolution. Mon. Wea. Rev. 114, 1330–1339.
  • Zhang, D.-L. and Cho, H.-R. 1992. The development of negative moist potential vorticity in thestratiform region of a simulated squall line. Mon. Wea. Re v. 120, 1322–1341.