268
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Breaking Rossby waves in the barotropic atmosphere with parameterized baroclinic instability

&
Pages 552-573 | Received 24 Sep 1998, Accepted 09 Jun 1999, Published online: 27 Jan 2017

References

  • Akahori, K. and Yoden, S. 1996. Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sc i. 54, 2349–2361.
  • Balasubramanian, G. and Garner, S. T. 1997. The role of momentum fluxes in shaping the life cycle of a baroclinic wave. J. Atmos. Sc i. 54, 510–533.
  • Charney, J. G. and Stern, M. E. 1962. On the stability of internal baroclinic jet in a rotating atmosphere. J. Atmos. Sc i. 19, 159–172.
  • Fritts, D. C. 1984. Gravity wave saturation in the middle atmosphere. A review of theory and observation. Rev. Geophys. Space Phys. 22,275–308.
  • Garcia, R. R. 1991. Parameterization of planetary wave breaking in the middle atmosphere. J. Atmos. Sc i. 38, 2187–2197.
  • Govindasamy, B. and Garner, S. T. 1997. The equilibration of short baroclinic waves. J. Atmos. Sc i. 54, 2850–2871.
  • Hartmann, D. L. and Zuercher, P. 1998. Response of baroclinic life cycle to barotropic shear. J. Atmos. Sc i. 42, 865–883.
  • Haynes, P. H. 1989. The effect of barotropic instability on the nonlinear evolution of a Rossby wave critical layer. J. Fluid Mech. 207, 231–266.
  • Juckes, M. N. 1989. A shallow water model of the winter stratosphere. J. Atmos. Sc i. 46, 2934–2955.
  • Juckes, M. N. and McIntyre, M. E. 1987. A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature 328, 590–596.
  • Kasahara, A. 1977. Numerical integration of the global barotropic primitive equations with Hough harmonic expansions. J. Atmos. Sc i. 34, 687–701.
  • Lindzen, R. S. 1981. Turbulence and stress owing to gravity wave and tidal break down. J. Geophys. Res. 86, 9707–9714.
  • Leovy, C. B., Sun, C.-R., Hitchman, M. H., Remsberg, E. E., Russell, J. M. III, Gordley, L. L., Gille, J. C. and Lyjak, L. V. 1985. Transport of ozone in the middle stratosphere: evidence for planetary wave breaking. J. Atmos. Tem Phys. 42, 230–244.
  • McIntyre, M. E. and Palmer, T. H. 1983. Breaking planetary waves in the stratosphere. Nature 305, 593–600.
  • McIntyre, M. E. and Palmer, T. H. 1984. The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys. 46, 825–849.
  • McIntyre, M. E. and Palmer, T. H. 1985. A note on the general concept of wave breaking for Rossby and gravity waves. Pure Appl. Geophys. 123, 964–975.
  • Robinson, W. A. 1988. Irreversible wave-mean flow interactions in a mechanistic model of the strato-sphere. J. Atmos. Sc i. 45, 3413–3430.
  • Shutts, G. J. 1983. The propagation of eddies in difluent jet streams: eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc. 109, 737–761.
  • Simmons, A. J. and Hoskins, B. J. 1976. Baroclinic instability on the sphere: normal modes of the primitive and quasi-geostrophic equations. J. Atmos. Sc i. 33, 1454–1477.
  • Tanaka, H. L. 1985. Global energetics analysis by expansion into three-dimensional normal mode functions during the FGGE winter. J. Meteor. Soc. Japan 63, 180–200.
  • Tanaka, H. L. 1991. A numerical simulation of amplification of low-frequency planetary waves and blocking formations by the upscale energy cascade. Mon. Wea. Re v. 119,2919–2935.
  • Tanaka, H. L. 1995. A life-cycle of nonlinear baroclinic waves represented by 3-D spectral model. Tellus 47A, 697–704.
  • Tanaka, H. L. 1998. Numerical simulation of a life-cycle of atmospheric blocking and the analysis of potential vorticity using a simple barotropic model. J. Meteor. Soc. Japan 76,983–1008.
  • Tanaka, H. L. and Kung, E. C. 1989. A study of low-frequency unstable planetary waves in realistic zonal and zonally varying basic states. Tellus 41A, 179-199.
  • Tanaka, H. L. and Sun, S. 1990. A study of baroclinic energy source for large-scale atmospheric normal modes. J. Atmos. Sc i. 47, 2674–2695.
  • Throncroft, C. D., Hoskins, B. J. and McIntyre, M. E. 1993. Two paradigms of baroclinic-wave life-cycle behavior. Q. J. Roy. Meteor. Soc. 119, 17–55.
  • Whitaker, J. S. and Snyder, C. 1993. The effects of spherical geometry on the evolution of baroclinic waves. J. Atmos. Sc i. 50, 597–612.
  • Warn, T. and Warn, H. 1978. The evolution of a non-linear critical level. Stud. Appl. Math. 359,37–71.