47
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A proposed adiabatic formulation of 3-dimensional global atmospheric models based on potential vorticity

, , &
Pages 129-139 | Received 22 Dec 1998, Accepted 05 Oct 1999, Published online: 15 Dec 2016

References

  • Arakawa, A. and Moorthi, S. 1988. Baroclinic instability in vertically discrete systems. J. Atmos. Sc i. 45, 1688–1707.
  • Arakawa, A. and Konor, C. S. 1996. Vertical differencing of the primitive equations based on the Charney—Phillips grid in hybrid o--p vertical coordinates. Mon. Wea. Re v. 124, 511–528.
  • Bates, J. R. and McDonald, A. 1982. Multiply-upstream, semi-Lagrangian advective schemes: analysis and application to a multilevel primitive equation model. Mon. Wea. Rev. 110, 1831–1842.
  • Bates, J. R., Semazzi, F. H. M., Higgins, R. W. and Barros, S. R. M. 1990. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Re v. 118, 1615–1627.
  • Bates, J. R., Li, Y., Brandt, A., McCormick, S. F. and Ruge, J. 1995. A global shallow-water numerical model based on the semi-Lagrangian advection of potential vorticity. Q. J. R. Meteorol. Soc. 121, 1981-2005. Bleck, R. and Benjamin, S. G. 1993. Regional weather prediction with a model combining terrain-following and isentropic coordinates (I). Model description. Mon. Wea. Re v. 121, 1770–1785.
  • Brandt, A. 1977. Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31, 333-390.
  • Brandt, A. 1988. Multi-level computations: review and recent developments. In: Multigrid methods: theory, applications and supercomputing (ed. McCormick, S. F), pp. 35–62. Marcel Dekker Inc., New York and Basel.
  • Charney, J. G. 1962. Integration of the primitive and balance equations. In: Proceedings of the International Symposium on Numerical weather prediction. Tokyo, Nov. 1960, Meteorological Society of Japan.
  • Charney, J. G. and Phillips, N. A. 1953. Numerical integ-ration of the quasi-geostrophic equation for barotropic and simple baroclinic flows. J. Meteor. 10, 71-99. Ertel, H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Met. Zeitsch. 59, 271–281.
  • Hoskins, B. J., McIntyre, M. E. and Robertson, A. W. 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946.
  • Hsu, Y-J. G. and Arakawa, A. 1990. Numerical modeling of the atmosphere with an isentropic vertical co-ordinate. Mon. Wea. Re v. 118, 1933–1959.
  • Johnson, R. D., Zapotocny, T. H., Reames, F. M., Wolf, B. J. and Pierce, R. B. 1993. A comparison of simulated precipitation by hybrid isentropic-sigma and sigma models. Mon. Wea. Re v. 121, 2088–2114.
  • Kasahara, A. 1974. Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Re v. 102, 509–522.
  • Konor, C. S. and Arakawa, A. 1997. Design of an atmo-spheric model based on a generalized vertical co-ordinate. Mon. Wea. Re v. 125, 1649–1673.
  • Li, Y. and Bates, J. R. 1996. A study of the behaviour of semi-Lagrangian models in the presence of orography. Quart. J. R. Met. Soc. 122, 1675–1700.
  • Li, Y., Mallard, R., Riishojgaard, L.-P., Cohn, S. E. and Rood, R. B. 1998. A study on assimilating potential vorticity data. Tellus 50A, 490–506.
  • Lorenz, E. N. 1960. Energy and numerical weather prediction. Tellus 12, 364–373.
  • McCormick, S. F. 1992. Multilevel projection methods in partial differential equations. CBMS-NSF Series, SIAM, Philadelphia.
  • Pierce, R. B., Johnson, D. R., Reames, F. M., Zapotocny, T. H. and Wolf, B. J. 1991. Numerical investigations with a hybrid isentropic-sigma model. Part 1: normal-mode characteristics. J. Atmos. Sci. 48, 2005-2024. Rivest, C., Staniforth, A. and Robert, A. 1994. Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: diagnosis and solution. Mon. Wea. Re v. 122, 366–376.
  • Robert, A. 1981. A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean 19, 35–46.
  • Robert, A. 1982. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan 60, 319–325.
  • Rossby, C. G. 1936. Dynamics of steady ocean currents in the light of experimental fluid dynamics. Papers in Physical oceanography and meteorology, vol. 1, no. 1. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.
  • Staniforth, A. and Côté, J. 1991. Semi-Lagrangian integ-ration schemes for atmospheric models — a review. Mon. Wea. Re v. 119, 2206–2223.
  • Temperton, C. and Staniforth, A. 1987. An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Q. J. R. Meteorol. Soc. 113, 1025-1039. Thuburn, J. 1997. A PV-based shallow water model on a hexagonal-icosahedral grid. Mon. Wea. Re v. 125, 2328–2350.
  • Tolstykh, M. 1996. Global semi-Lagrangian atmospheric model based on compact finite differences. Proceed-ings of the ECCOMAS 96 Conference (European Computational Fluid Dynamics Conference 1996), pp. 1–6. Published by John Wiley and Sons, Ltd.
  • Zhu, Z., Thuburn, J., Hoskins, B. J. and Haynes, P. H. 1992. A vertical finite-difference scheme based on a hybrid o--O—p coordinate. Mon. Wea. Re v. 120, 851–862.