123
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Justifying the WKB approximation in pure katabatic flows

&
Pages 453-462 | Received 22 Nov 2001, Accepted 23 May 2002, Published online: 15 Dec 2016

References

  • Arritt, R. W. and Pielke, R. A. 1986. Interactions of noc-turnal slope flows with ambient winds. Boundary-Layer Meteorol. 37, 183–195.
  • Bender, C. M. and Orszag, S. A. 1978. Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York, 593 pp.
  • Berger, B. W. and Grisogono, B. 1998. The baroclinic, variable eddy viscosity Ekman layer. An approximate analytical solution. Boundary-Layer Meteorol. 87, 363–380.
  • Defant, E 1949. Zur theorie der Hangwinde, nebst bemerkungen zur Theorie der Bergund Talwinde. Arch. Meteor. Geophys. Biokl. Ser. Al, 421–450.
  • Denby, B. 1999. Second-order modelling of turbulence in katabatic flows. Boundary-Layer Meteorol. 92, 67–100.
  • Denby, B. and Smeets, C. J. P. P. 2000. Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J. Appl. Meteorol. 39, 1601–1612.
  • Egger, J. 1990. Thermally forced flows: theory. In, Atmospheric processes over complex terrain. (ed. W. Blumen. Am. Meteorol. Soc., Washington, DC,43-57.
  • Enger, L. 1990. Simulation of dispersion in moderately complex terrain Part A. The fluid dynamics model. Atmos. Environ. 24A, 2431–2446.
  • Gill, A. E. 1982. Atmosphere-ocean dynamics,. Academic Press, New York, 662 pp.
  • Grisogono, B. 1994. Dissipation of wave drag in the atmospheric boundary layer. J. Atmos. Sc i. 51, 1237–1243.
  • Grisogono, B. 1995a. A generalized Ekman layer profile within gradually-varying eddy diffusivities. Quart. J. R. Meteorol. Soc. 121, 445–453.
  • Grisogono, B. 1995b. Wave-drag effects in a mesoscale model with a higher-order closure turbulence scheme. J. Appl. Meteorol. 34, 941–954.
  • Grisogono, B. and Oerlemans, J. 2001a. Katabatic flow: analytic solution for gradually varying eddy diffusivities. J. Atmos. Sc i. 58, 3349–3354.
  • Grisogono, B. and Oerlemans, J. 200lb. A theory for the estimation of surface fluxes in simple katabatic flows. Quart. J. R. Meteorol. Soc. 127, 2725-2739.
  • Holton, J. R. 1992. An introduction to dynamic meteorology,. Academic Press, New York, 3rd edn, 511 pp.
  • Hunt, J.C.R., Stretch D. D. and Britter, R. E. 1988. Length scales in stably stratified turbulent flows and their use in turbulence models. In: Stably stratified flow and dense gas dispersion. (ed. J. S. Puttock). Clarendon Press, Oxford, 285–321.
  • Laprise, J. P. R. 1993. An assessment of the WKBJ approximation to the vertical structure of linear mountain waves: implications for gravity-wave drag parameterization. J. Atmos. Sc i. 50, 1469–1487.
  • Mahrt, L. 1982. Momentum balance of gravity flows. J. Atmos. Sc i. 39, 2701–2711.
  • Mahrt, L. 1998. Stratified atmospheric boundary layers and breakdown of models. Theoret. Comput. Fluid Dyn. 11, 263–279.
  • Munro, D. S. and Davies, J. A. 1978. On fitting the log-linear model to wind speed and temperature profiles over a melting glacier. Boundary-Layer Meteorol. 15, 423–437.
  • Nappo, C. J. and Rao, K. S. 1987. A model study of pure katabatic flow. Tellus 39A, 61–71.
  • O’Brien, J. J. 1970. A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sc i. 27, 1213–1215.
  • Oerlemans, J. 1998. The atmospheric boundary layer over metling glaciers. In: Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, 129–153.
  • Oerlemans, J. and Fortuin, J. P. E 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258, 115–117.
  • Oerlemans, J., Bjönisson, H., Kuhn, M., Obleitner, E, Palsson, E, Smeets, P., Vugts, H. E and de Wolde, J. 1999. A glacio-meteorological experiment on Vatnajokull, Iceland, Summer 1996.Boundary-Layer Meteorol. 92, 92–26.
  • Pahlow, M., Partange, M. B., and Porte-Agel, E 2001. On Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol. 99, 99–248.
  • Pawlak, G. and Armi, L. 2000. Mixing and entrainment in developing stratified currents. J. Fluid Mech. 424,45–73.
  • Pielke, R. A.1984. Mesoscale numerical modeling. Academic Press, New York, 612 pp.
  • Prandtl, L. 1942. Fiihrer durch die Strömungslehre. Vieweg und Sohn, Braunschwieg, 373–375.
  • Schumann, U. and Gerz, T. 1995. Turbulent mixing in stably stratified shear flows. J. Appl. Meteorol. 34, 33–48.
  • Smeets, C. J. P. P., Duynkerke P. G. and Vugts, H. E 2000. Tur-bulence characteristics of the stable boundary layer over a mid-latitude glacier. Part Pure katabatic forcing conditions. Boundary-Layer Meteorol. 97, 97–107.
  • Stull, R. B.1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dayrdrecht, 666 pp.
  • Tjemstrom, M. 1993. Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles. J. Appl. Meteorol. 32, 948–963.
  • Van den Broeke, M. R. 1997. Momentum, heat and moisture budgets of the katabatic wind layer over a mid-latitude glacier in summer.J. Appl. Meteorol. 36, 36–774.
  • Van der Avoird, E. and Duynkerke, P. G. 1999. Turbulence in a katabatic flow. Does it resemble turbulence in stable boundary layers over flat surfaces? Boundary-Layer Meteorol. 92, 39–66.
  • Zilitinkevich, S. and Calanca, P. 2000. An extended theory for the stably stratified atmospheric boundary layer. Quart. J. R. Meteorol. Soc. 126, 1913–1923.
  • Zilitinkevich, S. and Mironov, D. V. 1996. A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Boundary-Layer Meteorol. 81, 325–351.