62
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Influence of a step-like coastline on the basin scale vorticity budget of mid-latitude gyre models

, &
Pages 255-272 | Received 12 Feb 2002, Accepted 08 Nov 2002, Published online: 15 Dec 2016

References

  • Adcroft, A. and Marshall, D. 1998. How slippery are piece-wise constant coastlines in numerical ocean models. Tellus 50-A, 95–108.
  • Aralcawa, A. 1966. Computational design for long-term nu-merical integration of the equations of fluid motion: Two-dimensional incompressible flow. part 1. J. Comput. Phys. 1,119–143.
  • Aralcawa, A. and Lamb, V. R. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Meth. Comput. Phys. 17, 174–267.
  • Beckmann, A. C. and Döscher, R. 1997. A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr. 27, 581–591.
  • Bleck, R. and Boudra, D. B. 1981. Initial testing of a numerical ocean circulation model using a hybrid quasi-isopycnal vertical coordinate. J. Phys. Oceanogr. 11, 755–770.
  • Blumberg, A. and Mellor, G. 1983. Diagnostic and prognostic numerical circulation studies of the south atlantic bight. J. Geophys. Res. 88, 4579–4592.
  • Bryan, K. 1969. A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4, 347–376.
  • Cox, M. D. 1979. A numerical study of somali currents ed-dies. J. Phys. Oceanogr. 29, 311–326.
  • Cox, M. D. 1984. A primitive equation three-dimensional model of the ocean. Tech. Rep., GFDL Ocean Group, NOAA, Princeton Univ., Princeton, NJ.
  • Dietrich, D. E. Ko, D.-S. and Yeske, L. 1993. On the application and evaluation of the relocatable DieCAST ocean circulation model in coastal and semi-enclosed seas. Tech. Rep. 93-1, Center for Air Sea Technology, Mississippi State University, Building 1103, Stennis Space Center, MS 39529.
  • Dupont, F. 2001. Comparison of numerical methods for modelling ocean circulation in basins with irregular coasts. PhD thesis, McGill University, Montreal, Canada.
  • Forrer, H. and Jeltsch, R. 1998. A higher-order boundary treatment for Cartesian-grid methods. J. Comput. Phys. 140, 259–277.
  • Gent, P. R. 1993. The energetically consistent shallow water equations. J. Atmos. Sci. 50, 1323–1325.
  • Gent, P. R. and McWilliams, J. C. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155.
  • Gerdes, R. 1993. A primitive equation ocean general circulation model using a general vertical coordinate transfor-mation. J. Geophys. Res. 98, 14683–14701.
  • Gill, A. E. 1982. Atmosphere—ocean dynamics, vol. 30 of International Geophysics Series. Academic Press, New York, 622 pp.
  • Hirst, A. and McDougall, T. J. 1996. Deep-water properties and surface buoyancy flux as simulated by a z-corrdinate model including eddy-induced advection. J. Phys. Oceanogr. 26, 1320–1343.
  • Ierley, G. R. and Sheremet, V. A. 1995. Multiple solutions and advection-dominated flows in the wind-driven circulation. Part I: Slip. J. Marine Res. 53, 703–738.
  • Killworth, P. D. and Edwards, N. R. 1999. A turbulent bottom boundary layer code for use in numerical ocean models. J. Phys. Oceanogr. 29, 1221–1238.
  • Lohmann, G. 1998. The influence of a near-bottom transport parameterization on the sensitivity of the thermohaline cir-culation. J. Phys. Oceanogr. 28, 2095–2103.
  • Madec, G. Chortler, M., Delecluse, P. and Crepon, M. 1991. A three-dimensional study of deep-water formation in the northwestern mediterranean sea. J. Phys. Oceanogr. 21, 21–1371.
  • Matthews, K., Noye, J. and Bills, P. 1996. A new method for numerical representation of the land-water boundary in lake circulation models. AppL Math. Modelling 20, 562–571.
  • Pedersen, G. 1986. On the effect of irregular boundaries in finite difference models. Int. J. Num. Methods in Fluids 6, 497–505.
  • Pedlosky, J. 1996. Ocean circulation theory. Springer-Verlag, Heidelberg, 453 pp.
  • Pedlosky, J. 1987. Geophysical fluid dynamics. 2nd edn., Springer-Verlag, New York, 710 pp.
  • Pember, R., Bell, J., Colella, P., Crutchfield, W. and Welcome, M. 1995. An adaptive cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 120–304.
  • Phillips, A. N. 1957. A coordinate system having some special advantages for numerical forecasting. J. Meteorol. 14, 184–185.
  • Roberts, M. J., Marsh, R., New, A. L. and Wood, R. A. 1996. An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part I: The subpolar gyre and high latitude processes. J. Phys. Oceanogr. 26, 26–1527.
  • Roberts, M. J. and Wood, R. A. 1997. Topographic sensitivity studies with a Bryan—Cox type ocean model. J. Phys. Oceanogr. 27, 27–836.
  • Sadourny, R. 1975. The dynamics of finite difference models of the shallow water equations. J. Atmos. Sci. 32,680–689.
  • Schwab, D. J. and Beletsky, D. 1998. Propagation of Kelvin waves along irregular coastlines in finite-difference models. Adv. Water Resources 22, 239–235.
  • Shchepeticin, A. E and O’Brien, J. 1996. A physically consistent formulation of lateral friction in shallow-water equa-tion ocean models. Mon. Weather Rev. 124, 1285-1300.
  • Wells, N. C. and de Cuevas, B. A. 1995. Depth-integrated voracity budget of the southern ocean from a general circulation model. J. Phys. Oceanogr. 25, 2569–2582.
  • Winton, M., Hallberg, R. and Gnanadesilcan, A. 1998. Sim-ulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr. 27, 2163–2174.