260
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Relevance of sub-grid-scale land-use effects for mesoscale models

&
Pages 232-246 | Received 06 Mar 2002, Accepted 03 Dec 2002, Published online: 15 Dec 2016

References

  • Aralcawa, A. 1972. Design of the UCLA general circulation model. Numerical simulation of weather and climate. Tech. Report No. 7, Department of Meteorology, University of California Los Angeles, USA.
  • Arola, A. 1999. Parametrisaton of turbulent and mesoscale fluxes for heterogeneous surfaces. J. Atmos. Sc i. 56, 584–598.
  • Belair, S., Lacarrere R, Noilhan J., Masson V. and Stein J. 1998. High resolution simulation of surface turbulent fluxes during HAPEX-MOBILHY. Mon. Wea. Re v. 126, 2234–2253.
  • Brutsaert, W. 1975. The roughness length for water vapor, sensible heat and other scalars. J. Atmos. Sc i. 32, 2028–2031.
  • Charnock, H. 1955. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 81, 639–640.
  • Claussen, M. 1991. Estimation of areally-averaged surface fluxes. Boundary-Layer Meteorol. 54, 387–410.
  • Cox, R., Bauer, B. L. and Smith, T. 1998. Mesoscale model intercomparison. Bull. Am. Meteorol. Soc. 79, 265–283.
  • Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. R. Meteorol. Soc. 102,405–418.
  • Deardorff, J. W. 1978. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of veg-etation. J. Geophys. Res. 83, 1889–1903.
  • Freie Universität Berlin Institut fiir Meteorologie 1994. Berliner Wetterlcarte im Jahre 1994. Meterologische Ab-handlungen, Neue Folge, Serie B, Grundlagenmaterial; 71-7, Verlag Dietrich Reimer, Berlin.
  • Katzfey, J. J. 1995. Simulation of extreme New Zealand precipitation events. Part 1: Sensitivity to orography and res-olution. Mon. Wea. Re v. 123, 737–754.
  • Katzfey, J. J. and Ryan, B. F. 1996. Modification of the thermodynamic structure of the lower troposphere by the evaporation of precipitation: A GEWEX cloud system study. Mon. Wea. Re v. 125, 1431–1466.
  • Katzfey, J. J. and Ryan, B. F. 2000. Midlatitude frontal clouds: GCM-Scale Modeling Implications. J. Climate 13, 2729–2745.
  • Klink, K. 1995. Surface aggregation and subgrid-scale cli-mate. Int. J. Climatol. 15, 1219–1240.
  • Klink, K. and Willmott, C. J. 1994. Influence of soil moisture and surface roughness heterogeneity on modeled climate. Climate Res. 4, 105–113.
  • Kowalczyk, E. A., Garratt, J. R. and Krummel, P. B. 1991. A soil-canopy scheme for use in a numerical model of the atmosphere-1D stand-alone model. Tech. Paper. 23, CSIRO Div. Atmos. Res., PMB1, Aspendale, Vic. 3195, Australia.
  • Lacis, A. A. and Hansen, J. E. 1974. A parameterization for the absorption of the solar radiation in the Earth’s atmo-sphere. J. Atmos. Sci. 31, 118–133.
  • Lenz, C.-J., Muller, F. and Schlünzen, K. H. 2000. The sensitivity of mesoscale chemistry transport model results to boundary values. Environ Monitoring and Assessment 65, 287–295.
  • Lettau, H. H. 1979. Wind and temperature profile prediction for diabatic surface layers including strong inversion cases. Boundary-Layer Meteorol. 17, 443–464.
  • Louis, J-F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol. 17, 187–202.
  • Lynn, B. H., Rind, D. and Avissar, R. 1995. The importance of mesoscale circulations generated by subgrid-scale land-scape heterogeneities in general circulation models. J. Cli-mate 8, 191–205.
  • Lüpkes, C. and Schlünzen, K. H. 1996. Modelling the Arctic convective boundary-layer with different turbulence pa-rameterizations.Boundary-Layer Meteorol. 79, 107–130.
  • McGregor, J. L. 1987. Accuracy and initialization of a two-time-level split semi-Lagrangian model. In: Short- and medium-range numerical weather prediction (ed. T. Matsuno), J. Meteorol. Soc. Jpn. Special Volume, 233–246.
  • McGregor, J. L. 1993. Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev. 121, 221–246.
  • McGregor, J. L., Walsh, K. J. and Katzfey, J. J. 1993.Nested modelling for regional climate studies. In: Modelling change in environmental systems (eds. A. J. Jakeman, M. B. Beck and M. J. McAleer) Wiley, New York, 367-386.
  • Mölders, N., Raabe, A. and Tetzlaff, G. 1996. A comparison of two strategies on land surface heterogeneity used in a mesoscale beta meteorological model. Tellus 48A, 733–749.
  • M¨uller, F., Schlünzen, K. H. and Schatzmann, M. 2000. Test of numerical solvers for chemical reaction mechanisms in 3D air quality models. Environmental Modelling Software 15, 639–646.
  • Niemeier, U. 1997. Chemische Umsetzungen in einem hochauflösenden mesoskaligen Modell—Bestimmung geeigneter Randwerte und Modellanwendungen -. Dis-sertation, Fachbereich Geowissenschaften, Universitiit Hamburg A 28, 161 pp.
  • Niemeier, U. and Schlünzen, K. H. 1993. Modelling steep terrain influences on flow patters at the Isle of Helgoland. Beitr Phys. Atmosph. 66, 45–62.
  • Orlanslci, I. 1976. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251–269.
  • Pielke, R. A. 1984. Mesoscale meteorological modeling. Academic Press, London, 612 pp.
  • Schlünzen, K. H. 1990. Numerical studies on the inland penetration of sea breeze fronts at a coastline with tidally flooded mudflats. Beitr Phys. Atmosph. 63, 243–256.
  • Schlünzen, K. H. 1997. On the validation of high-resolution atmospheric mesoscale models. J. Wind Eng. Ind. Aerodynam. 67-68, 68–492.
  • Schlünzen, K. H. and Pahl, S. 1992. Modification of dry deposition in a developing sea-breeze circulation—a numerical case study. Atmos. Environ. 26A, 51–61.
  • Schlünzen, K. H., Bigalke, K., Liipkes, C., Niemeier, U. and Salzen, K. 1996. Concept and realization of the mesoscale transport- and fluid-model ‘METRAS’. METRAS Techn. Rep., Meteorologisches Institut, ZMK, Universitiit Ham-burg 5, 156 pp.
  • Schlünzen, K. H., Stahlschmidt, T., Rebers, A., Niemeier, U., Kriews, M. and Dannecker, W. 1997. Atmospheric input of lead into the German Bight—A high resolution measurement and model case study for April 23rd to 30th, 1991. Mar EcoL Prog. Ser. 156, 299–309.
  • Schwarzkopf, M. D., and Fels, S. B. 1991. The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geo-phys. Res. 96, 96–9096.
  • Sheng, L., Schlünzen, K. H. and Wu, Z. 2000. Three-dimensional numerical simulation of the mesoscale wind structure over Shandong peninsula. Acta Meteorol. Sinica 1, 97–107.
  • Smiatek, G. 1998. Mapping land-use for modelling biogenic and anthropogenic emissions. Proceedings of the EURO-TRAC2 Symposium, Garmisch-Partenkirchen.
  • USGS, 1996. Global digital elevation model GTOP030. U.S. Geological Survey, EROS Data Center in Sioux Falls, South Dakota.
  • Salzen, K. and Schlünzen, K. H. 1999. Simulation of the dynamics and composition of secondary and marine inorganic aerosols in the coastal atmosphere. J. Geophys. Res. D 23, 30 201–30217.
  • Salzen, K., Claussen, M. and Schlünzen, K. H. 1996. Appli-cation of the concept of blending height to the calculation of surface fluxes in a mesoscale model. Meteorol. Z. NF 5, 60–66.
  • Wu, Z. and Schlünzen, K. H. 1992. Numerical study on the local wind structures forced by the complex terrain of Qingdao area. Acta Meteorol. Sinica 6, 355–366.
  • Zeng, X. and Pielke, R. 1995. Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Climate 8, 1156–1177.
  • Zhang, D. and Anthes, R. 1982. A high-resolution model of the planetary boundary layer: sensitivity tests and comparisons with SESAME-79 data. J. AppL Meteorol. 21, 1594–1609.