144
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A new approach to the cumulus parameterization issue

&
Pages 275-300 | Received 09 Sep 2002, Accepted 11 Feb 2003, Published online: 15 Dec 2016

References

  • Aralcawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674–701.
  • B´elair, S., Methot, M. A., Mailhot, J.,Bilodeau, B., Patoine, A., Pellerin, G. and Cote, J. 2000. Operational Implementation of the Fritsch—Chappell Convective Scheme in the 24-km Canadian Regional Model. Wea. Forecasting 15, 257–275.
  • Businger, J. A., Wyngard, J. C., Izumi, Y. and Bradley, E. F. 1971. Flux profile relationship in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189.
  • Das, S., Mitra, A. K., Iyengar, G. R. and Mohandas, S. 2001. Comprehensive test of different cumulus parameterization schemes for the simulation of the Indian summer monsoon. MeteoroL Atmos. Phys. 78, 227–244.
  • Emanuel, K. A. 1991. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48, 2313–2335.
  • Emanuel, K. A. and Zivkovic-Rothman, M. 1999. Develop-ment and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 56, 1766–1782.
  • Ferretti, R., Paolucci, T., Zheng, W., Guido Visconti, and Bonelli, P. 2000. Analyses of the precipitation pattern on the Alpine region using different cumulus convection parameterizations. J. Appl. Meteorol. 39, 39–200.
  • Grell, G. A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev. 121, 764–787.
  • Harshvardan and Corsetti, T. G. 1984. Long-wave parameterization for the UCLA/GLAS GCM. NASA Tech. Memo. 86072, Goddard Space Flight Center, Greenbelt, MD, 52 pp.
  • John, P. G. 2001. Implementation of a shortwave radiation parameterization scheme in the NCMRWF operational global model. In: Research activities in atmospheric and oceanic modelling. Rep. No: 31, WMOTID No. 1064, 4.3–4.4.
  • Kanamitsu, M. 1975. On numerical prediction over a global tropical belt. Dept. of Meteorology Rep. 75-1, Florida State University, Tallahassee, FL, 282 pp.
  • Kanamitsu, M., Tada, K., Kudo, K., Sato, N. and Ita, S. 1983. Description of the .TMA operational spectral model. J. MeteoroL Soc. Jpn. 61, 812–828.
  • Kitade, T. 1983. Nonlinear normal mode initialization with physics. Mon. Wea. Rev. 111, 2194–2213.
  • Krishnamurti, T. N. and Bedi, H. S. 1988. Cumulus parameterization and rainfall rates Bl. Mon. Wea. Rev. 116, 583–599.
  • Krishnamurti, T. N., Ramanathan, Y., Pan, H. L., Pasch, R. J. and Molinari, J. 1980. Cumulus parameterization and rainfall rates I. Mon. Wea. Rev. 108, 465–472.
  • Krishnamurti, T. N., Low-Nam, S. and Pasch, R. 1983. Cu-mulus parameterization and rainfall rates H. Mon. Wea. Rev. 111, 815–828.
  • Krishnamurti, T. N., Xue, J., Bedi, H. S., Ingles, K. and Oosterhof, D. 1991. Physical initialization for numerical weather prediction over the tropics. Tellus 43AB, 53-81.
  • Krishnamurti, T. N., Bedi, H. S. and Ingles, K. 1993. Physical initialization using SSM/I rain rates. Tellus 45A, 247–269.
  • Krishnamurti, T. N., Bedi, H. S., Oosterhof, D. and Hardiker, V. 1994. The formation of hurricane Frederic of 1979. Mon. Wea. Rev. 122, 1050–1074.
  • Krishnamurti, T. N., Kishtawal, C. M., LaRow, T., Bachiochi, D., Zhang, Z., Williford, C. E., Gadgil, S. and Surendran, S. 1999. Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285, 1548–1550.
  • Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, C. E., Gadgil, S. and Surendran, S. 2000a. Multimodel ensemble forecasts for weather and seasonal climate. J. Climate 13, 4196–4216.
  • Krishnamurti, T. N., Kishtawal, C. M., Shin, D. W. and Williford, C. E. 2000b. Improving tropical precipitation forecasts from a multianalysis superensemble. J. Climate 13,4217–4227.
  • Krishnamurti, T. N., Surendran, S., Shin, D. W., Correa-Tones, R. J., Vijayakumar, T. S. V., Williford, C. E., Kummerow, C., Adler, R. F., Simpson, J., Kalcar, R., Olson, W. S. and Turk, F. J. 2001. Real-time multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev. 129, 129–2883.
  • Krishnamurti, T. N., Stefanova, L., Chalcraborty, A., Vi-jayalcumar, T. S. V., Cocke, S., Bachiochi, D. and Mackey, B. 2002. Seasonal forecasts of precipitation anomalies for North American and Asian monsoons. J. Meteorol. Soc. Jpn., in press.
  • Kuo, Y.-H., Reed, R. J. and Liu, Y.-B. 1996. The ERICA IOP 5 storm. Part BI: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev. 124, 124–1434.
  • Lacis, A. A. and Hansen, J. E. 1974. A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci. 31, 118–133.
  • Lord, S. J. and Arakawa, A. 1980. Interaction of a cloud ensemble with the large-scale environment. Part H. J. Atmos. Sci. 37, 2677–2692.
  • Lord, S. J., Chao, W. C. and Arakawa, A. 1982. Interaction of a cumulus cloud ensemble with the large-scale envi-ronment. Part IV: The discrete model. J. Atmos. Sci. 39, 39–113.
  • Louis, J. F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol. 17, 187–202.
  • Mesinger, F. 1996. Improvements in quantitative precipitation forecasts with the Eta regional model at the NCEP: The 48-km upgrade. Bull. Am. Meteorol. Soc. 77, 2637–2649.
  • Moorthi, S. and Suarez, M. J. 1992. Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev. 120, 978–1002.
  • Palmer, T. N. and Tibaldi, S. 1988. On the prediction of fore-cast skill. Mon. Wea. Rev. 116, 2453–2480.
  • Pan, H.-L. and Wu, W.-S. 1995. Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, No. 409, 40 pp. [Available from NCEP, 5200 Auth Road, Washing-ton, DC 20233].
  • Rajendran, K., Nanjundiah, R. S. and Srinivasan, J. 2002. Comparison of seasonal and intraseasonal variation of tropical climate in NCAR CCM2 GCM with two different cumulus schemes. Meteorol. Atmos. Phys. 79, 57–86.
  • Raymond, D. J. and Blyth, A. M. 1986. A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci. 43, 2708–2718.
  • Reed, R. J., Norquist, D. C. and Recker, E. E. 1977. The structure and properties of African wave disturbances as observed during phase BI of GATE. Mon. Wea. Rev, 105, 105–333.
  • Ross, R. S. and Krishnamurti, T. N. 2003. Reduction of systematic errors for global numerical weather prediction from the FSU superensemble. Meteorol. Atmos. Phys., in press.
  • Shin, D. W. and Krishnamurti, T. N. 2003. Shortto medium-range superensemble precipitation forecasts using satellite products. Part I: Deterministic forecasting. J. Geophys. Res., 108(D8), 10.1029/2001JDO01510, in press.
  • Shin, D. W. and Krishnamurti, T. N. 2003. Shortto medium-range superensemble precipitation forecasts using satellite products. Part H: Probabilistic forecasting. J. Geophys. Res., 108(D8), 10.1019/2001JD001511, in press.
  • Tiedke, M. 1984. The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc., Workshop on Convection in Large-scale Numerical Models. ECMWF, Reading, U.K., 297-316.
  • Toth, Z. and Kalnay, E. 1993. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317–2330.
  • Wallace, J. M., Tibaldi, S. and Simmons, A. J. 1983. Reduc-tion of systematic forecast errors in the ECMWF model through the introduction of envelope orography. Quart. J. R. Meteorol. Soc. 109, 683–718.
  • Wang, W. and Seaman, N. L. 1997. A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev. 125, 252–278.
  • Yanai, M., Esbensen, S. and Chu, J. H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30, 611–627.
  • Zhang, G. J. and McFarlane, N. A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean. 33,407–446.