438
Views
13
CrossRef citations to date
0
Altmetric
Dynamic meteorology

Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: radar observations, fine-scale modelling and kinetic energy budget analysis

&
Article: 17261 | Received 18 Aug 2011, Published online: 28 Feb 2012

References

  • Arnault J. Roux F. Case study of a developing African easterly wave during NAMMA: an energetic point of view. J. Atmos. Sci. 2009; 66: 2991–3020.
  • Bretherton F. P. Momentum transport by gravity waves. Q. J. R. Meteor. Soc. 1969; 95: 213–243.
  • Briggs, B. H. 1984. The Analysis of Spaced Sensor Records by Correlation Techniques, Handbook for MAP. Vol. 13, SCOSTEP Secr. University of Illinois: Urbana, pp. 166–186.
  • Doyle J. D. Shapiro M. A. Jiang Q. Bartels D. L. Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci. 2005; 62: 3106–3126.
  • Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989; 46: 3077–3107.
  • Durran R. D. Klemp J. B. A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev. 1983; 111: 2341–2361.
  • Fritts D. C. Rastogi P. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: theory and observations. Radio Sci. 1985; 20(6): 1247–1277.
  • Fritts, D. C, Tsuda, T, VanZandt, T. E, Smith, S. A, Fukao, T. S. S and co-authors. 1990. Studies of velocity fluctuations in the lower atmosphere using the MU radar. Part II: momentum fluxes and energy densities. J. Atmos. Sci. 47, 51–66.
  • Fritts D. C. Alexander M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003; 41(1): 1–64.
  • Gage K. Radar observations of the free atmosphere: structure and dynamics. Radar in Meteorology. Atlas D.American Meteorological Society: BostonUSA, 1990; 534–565.
  • Hertzog A. Boccara G. Vincent R. A. Vial F. Cocquerez P. Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: results from the Vorcore Campaign in Antarctica. J. Atmos. 2008; 65: 3056–3070.
  • Holdsworth D. A. Reid I. M. Comparisons of full correlation analysis (FCA) and imaging Doppler interferometry (IDI) winds using the Buckland Park MF radar. Ann. Geophys. 2004; 22: 3829–3842.
  • Hong S.-Y. Dudhia J. Chen S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev. 2004; 132: 103–120.
  • Hong S.-Y. Noh Y. Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006; 134: 2318–2341.
  • Jiang, J. H, Wu, D. L and Eckermann, S. D. 2002. Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes. J. Geophys. Res. 107(D20), 8273. 10.3402/tellusa.v64i0.17261.
  • Kärkäs E. Meteorological conditions of the Basen nunatak in Western Dronning Maud Land, Antarctica, during the years 1989–2001. Geophysica. 2004; 40(1–2): 39–52.
  • Kirkwood, S, Wolf, I, Nilsson, H, Dalin, P, Mikhailova, D and co-authors. 2007. Polar mesosphere summer echoes at Wasa, Antarctica (73°S) – first observations and comparison with 68°N. Geophys. Res. Lett. 34(L15803,6PP). 10.3402/tellusa.v64i0.17261.
  • Kirkwood, S, Nilsson, H, Morris, R. J, Klekociuk, A. R, Holdsworth, D. A and co-authors. 2008. A new height for the summer mesopause—Antarctica, December 2007. Geophys. Res. Lett. 35(L23810,5PP). 10.3402/tellusa.v64i0.17261.
  • Kirkwood S. Mihalikova M. Rao T. N. Satheesan K. Turbulence associated with mountain waves over Northern Scandinavia – a case study using the ESRAD VHF radar and the WRF mesoscale model. Atmos. Chem. Phys. 2010; 10: 3583–3599.
  • Lilly D. K. Kennedy P. J. Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci. 1973; 30: 1135–1152.
  • Liu, H, Jezek, K, Li, B and Zhao, Z. 2001. Radarsat Antarctic Mapping Project Digital Elevation Model Version 2. National Snow and Ice Data Center, Boulder, CO. Digital media.
  • McFarlane N. A. The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 1987; 44: 1775–1800.
  • Mlawer E. J. Taubman S. J. Brown P. D. Iacono M. J. Clough S. A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res. 1997; 102(D14): 16663–16682.
  • Plougonven, R, Hertzog, A and Teitelbaum, H. 2008. Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula. J. Geophys. Res. 113, D16113. 10.3402/tellusa.v64i0.17261.
  • Prichard I. T. Thomas L. Radar observations of gravity-waves momentum fluxes in the troposphere and lower stratosphere. Ann. Geophys. 1993; 11: 1075–1083.
  • Röttger J. ST radar observations of atmospheric waves over mountainous areas: a review. Ann. Geophys. 2000; 18: 750–765.
  • Sato K. Yoshiki M. Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J. Atmos. Sci. 2008; 65: 3719–3735.
  • Sawyer J. S. The introduction of the effects of topography into methods of numerical forecasting. Q. J. R. Meteor. Soc. 1959; 85: 31–43.
  • Scavuzzo C. M. Lamfri M. A. Teitelbaum H. Lott F. A study of the low-frequency inertio-gravity waves observed during the Pyrénées Experiment. J. Geophys. Res. 1998; 103: 1747–1758.
  • Serafimovich, A, Zülicke, Ch, Hoffmann, P, Peters, D, Dalin, P and co-authors. 2006. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign – Part II: radar investigations and modelling studies. Ann. Geophys. 24, 2863–2875.
  • Skamarock W. C. Klemp J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comp. Phys. 2008; 227: 3465–3485.
  • Spiga A. Teitelbaum H. Zeitlin V. Identification of the sources of inertia-gravity waves in the Andes Cordillera region. Ann. Geophys. 2008; 26: 2551–2568.
  • Valkonen T. Vihma T. Kirkwood S. Johansson M. Fine-scale model simulation of gravity waves generated by Basen nunatak in Antarctica. Tellus. 2010; 62A: 319–332.
  • VanZandt T. E. Fritts D. C. A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys. 1989; 130: 399–420.