1,031
Views
0
CrossRef citations to date
0
Altmetric
Thematic cluster: Parameterization of lakes in numerical weather prediction and climate models

Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

, , , , &
Article: 17330 | Received 06 May 2011, Published online: 05 Apr 2012

References

  • Arsenyev S. A. Felzenbaum A. I. Integral model of the active ocean layer. Izv. Akad. Nauk SSSR. Fizika Atmosfery i Okeana. 1977; 13: 1034–1043.
  • Baldauf, M, Seifert, A, Förstner, J, Majewski, D, Raschendorfer, M and Reinhardt, T. 2011. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon. Weather Rev. 139, 3887–3905. DOI: 10.1175/MWR-D-10-05013.1.
  • Bitz C. M. Libscomb W. H. An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. 1999; 104: 15669–15677.
  • Brankovic, C and Van Maanem, J. 1985. The ECMWF climate system. Research Department Technical Memorandum 109. European Centre for Medium-Range Weather Forecasts, Reading.
  • Cheng B. Launiainen J. Vihma T. Modelling of superimposed ice formation and sub-surface melting in the Baltic Sea. Geophysica. 2003; 39: 31–50.
  • Deardorff J. W. Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci. 1979; 36: 424–436.
  • Dutra, E, Stepanenko, V. M, Balsamo, G, Viterbo, P, Miranda, P. M. A, Mironov, D and Schär, C. 2010. An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Env. Res. 15, 100–112.
  • Ebert E. E. Curry J. A. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res. 1993; 98: 10085–10109.
  • Fedorovich E. E. Mironov D. V. A model for a shear-free convective boundary layer with parameterized capping inversion structure. J. Atmos. Sci. 1995; 52: 83–95.
  • Filyushkin B. N. Miropolsky Y. Z. Seasonal variability of the upper thermocline and self-similarity of temperature profiles. Okeanologia. 1981; 21: 416–424.
  • Golosov, S and Kirillin, G. 2010. A parameterized model of heat storage by lake sediments. Env. Modell. Softw. 25, 793–801. DOI: 10.1016/j.envsoft.2010.01.002.
  • Kamenkovich V. M. Kharkov B. V. On the seasonal variation of the thermal structure of the upper layer in the ocean. Okeanologia. 1975; 15: 978–987.
  • Kirillin G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Env. Res. 2010; 15: 279–293.
  • Kirillin, G, Hochschild, J, Mironov, D, Terzhevik, A, Golosov, S and Nützmann, G. 2011. FLake-Global: Online lake model with worldwide coverage. Env. Modell. Softw. 26, 683–684. 10.3402/tellusa.v64i0.17330.
  • Kitaigorodskii S. A. Miropolsky Y. Z. On the theory of the open ocean active layer. Izv. Akad. Nauk SSSR. Fizika Atmosfery i Okeana. 1970; 6: 178–188.
  • Launiainen J. Cheng B. Modelling of ice thermodynamics in natural water bodies. Cold Reg. Sci. Technol. 1998; 27: 153–178.
  • Leppäranta M. A review of analytical models of sea-ice growth. Atmos.-Ocean. 1993; 31: 123–138.
  • Leppäranta, M, Wang, C, Wang, K, Shirasawa, K and Uusikivi, J. 2006.Investigations of wintertime physical processes in boreal lakes. In: Workshop on Water Resources of the European North of Russia: Results and Perspectives. (eds. N. N. Filatov, V. I. Kuharev and V. H. Lifshits), Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences: PetrozavodskKarelia, Russia, pp. 342–359.
  • Majewski, D, Liermann, D, Prohl, P, Ritter, B, Buchhold, M, Hanisch, T, Paul, G, Wergen, W and Baumgardner, J. 2002. Icosahedral-hexagonal gridpoint model GME: description and high-resolution tests. Mon. Weather Rev. 130, 319–338.
  • Maykut G. A. Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 1971; 76: 1550–1575.
  • Mellor G. L. Kantha L. An ice-ocean coupled model. J. Geophys. Res. 1989; 94: 10937–10954.
  • Mironov, D, Heise, E, Kourzeneva, E, Ritter, B, Schneider, N and Terzhevik, A. 2010. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Env. Res. 15, 218–230.
  • Mironov, D. V. 2008. Parameterisation of lakes in numerical weather prediction. Description of a lake model. COSMO Technical Report 11. Deutscher Wetterdienst: Offenbach am MainGermany. Online at http://www.cosmo-model.org.
  • Mironov, D. V, Golosov, S. D, Zilitinkevich, S. S, Kreiman, K. D and Terzhevik, A. Y. 1991. Seasonal changes of temperature and mixing conditions in a lake. In: Modelling Air-Lake Interaction. Physical Background. (ed. S. S. Zilitinkevich). Springer-Verlag: Berlin, pp. 74–90.
  • Mironov, D and Ritter, B. 2003. A first version of the ice model for the global NWP system GME of the German Weather Service. In: Research Activities in Atmospheric and Oceanic Modelling. (ed. J. Cote). WMO/TD, Report No. 33, pp. 4.13–4.14.
  • Mironov, D and Ritter, B. 2004. Testing the new ice model for the global NWP system GME of the German Weather Service. In: Research Activities in Atmospheric and Oceanic Modelling. (ed. J. Cote). WMO/TD, Report No. 34, pp. 4.21–4.22.
  • Omstedt A. A coupled one-dimensional sea ice–ocean model applied to a semi-enclosed basin. Tellus. 1990; 42A: 568–582.
  • Omstedt, A. 1999. Forecasting ice on lakes, estuaries and shelf seas. In: Ice Physics and the Natural Environment. Vol. I: 56 of NATO ASI Series (eds. J. S. Wettlaufer, J. G. Dash and N. Untersteiner). Springer-Verlag: Berlin and Heidelberg, pp. 185–208.
  • Perovich D. K. Grenfell T. C. Light B. Hobbs P. V. Seasonal evolution of the albedo of multiyear arctic sea ice. J. Geophys. Res. Oceans. 2002; 107: 8044–8056.
  • Randall D. A. Wielicki B. A. Measurements, models, and hypotheses in the atmospheric sciences. Bull. Amer. Meteorol. Soc. 1997; 78: 399–406.
  • Schulz, J.-P. 2011. Introducing a sea ice scheme in the COSMO model. COSMO Newsletter. 11. Online at http://www.cosmo-model.org.
  • Semtner A. J. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr. 1976; 6: 379–389.
  • Stefan J. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Phys. Chem. 1891; 42: 269–286.
  • Steppeler, J, Doms, G, Schättler, U, Bitzer, H. W, Gassmann, A, Damrath, U and Gregoric, G. 2003. Meso-gamma scale forecasts using the non-hydrostatic model LM. Meteorol. Atmos. Phys. 82, 75–96.
  • Thomas, D. N and Dieckmann, G. S. (Eds.)2003. Sea ice. An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell Science, 402 p.
  • Zilitinkevich S. S. Turbulent Penetrative Convection. Avebury Technical: Aldershot, 1991; 179 p.
  • Zilitinkevich, S. S, Fedorovich, E. E and Mironov, D. V. 1992. Turbulent heat transfer in stratified geophysical flows. In: Recent Advances in Heat Transfer. (eds. B. Sundén and A. Zukauskas). Elsevier Science Publisher B. V.: Amsterdam, pp. 1123–1139.