1,721
Views
34
CrossRef citations to date
0
Altmetric
Thematic cluster: Parameterization of lakes in numerical weather prediction and climate models

Snow and ice on Bear Lake (Alaska) – sensitivity experiments with two lake ice models

, , &
Article: 17339 | Received 08 Apr 2011, Published online: 13 Mar 2012

References

  • ALISON. 2011. Alaska Lake Ice and Snow Observatory Network. Online at http://www.gi.alaska.edu/alison/ALISON_measures.html.
  • Anderson, E. A. 1976. A Point Energy and Mass Balance Model of a Snow Cover. Technical Report NWS 19, 150 pp., Natl. Oceanic and Atmos. Admin., Washington, D. C.
  • Ashton G. D. River and lake ice thickening, thinning and snow ice formation. Cold Regions Sci. Technol. 2011; 68: 3–19.
  • Briegleb, B. P., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., Holland, M. M. and co-authors. 2004. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. Technical Report NCAR/TN-463 + STR, National Center for Atmospheric Research, Boulder, CO, 78 pp.
  • Bolsenga S. J. Preliminary observations on the daily variation of ice albedo. J. Glaciol. 1977; 18: 517–521.
  • Brown L. C. Duguay C. R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 2010; 34: 671–704.
  • Cheng B. Launianen J. Vihma T. Modelling of Superimposed ice formation and Sub-Surface melting in the Baltic Sea. Geophysica. 2003; 39: 31–50.
  • Cheng B. Vihma T. Pirazzini R. Granskog M. A. Modelling of superimposed ice formation during the spring snowmelt period in the Baltic Sea. Ann. Glaciol. 2006; 44: 139–146.
  • Cheng, B., Zhang, Z., Vihma, T., Johansson, M., Bian, L. and co-authors. 2008. Model experiments on snow and ice thermodynamics in the Arctic with CHINARE 2003 data. J. Geophys. Res., 113, C09020.
  • Christensen J. H. Christensen O. B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change. 2007; 81: 7–30.
  • Curry J. A. Schramm J. Perovich D. Pinto O. Application of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J. Geophys. Res. 2001; 106: 15345–15355.
  • Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard P., Morris, K. and co-authors. 2003. Ice cover variability on shallow lakes at high latitudes: model simulations and observations. Hydrol. Proc. 17, 3465–3483.
  • Ebert E. E. Curry J. A. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interaction. J. Geophys. Res. 1993; 98(C6): 10085–10109.
  • Eerola K. Rontu L. Kourzeneva E. Shcherbak E. A study on effects of lake temperature and ice cover in HIRLAM. Boreal. Env Res. 2010; 15: 130–142.
  • Gabison R. A thermodynamic model of the formation, growth, and decay of first-year sea ice. J. Glaciol. 1987; 33: 105–109.
  • Gardner, A. S. and Sharp, M. J. 2010. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. 115, F01009, doi:10.1029/2009JF001444.
  • Henneman H. E. Stefan H. G. Albedo models for snow and ice on a freshwater lake. Cold Regions Sci. Technol. 1999; 29: 31–48.
  • Heron R. Woo M. K. Decay of a High Arctic lake-ice cover: observations and modelling. J. Glaciol. 1994; 40: 283–292.
  • Huwald H. Tremblay L.-B. Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes. J. Geophys. Res. 2005; 110: C05009.
  • Jeffries M. O. Morris K. Instantaneous daytime conductive heat flow through snow on lake ice in Alaska. Hydrol. Proc. 2006; 20: 803–815.
  • Jeffries M. O. Morris K. Duguay C. R. Lake ice growth and decay in central Alaska: observations and computer simulations compared. Ann. Glaciol. 2005; 40: 195–199.
  • Kawamura T. Ohshima K. I. Takizawa T. Ushio S. Physical, structural, and isotopic characteristics and growth processes of fast sea ice in Lutzow-Holm Bay, Antarctica. J. Geophys. Res. 1997; 102(C2): 3345–3355.
  • Kitaigorodskii S. A. Miropolsky Y. Z. On the theory of the open ocean active layer. Izv. Akad. Nauk SSSR. Fizika Atmosfery I Okeana. 1970; 6: 178–188.
  • Launiainen J. Cheng B. Modelling of ice thermodynamics in natural water bodies. Cold Reg. Sci. Technol. 1998; 27(3): 153–178.
  • Leppäranta M. A growth model for black ice, snow ice and snow thickness in subantarctic basins. Nordic Hydrol. 1983; 14: 59–70.
  • Liu J. Zhang Z. Inoue J. Horton R. M. Evaluation of snow/ice albedo parameterizations and their impacts on sea-ice simulations. Int. J. Climatol. 2007; 27: 81–91.
  • MacKay, M. D., Neale, P. J., Arp, C. D., De Senerpont Domis, L. N., Fang, X., and co-authors. 2009. Modeling lakes and reservoirs in the climate system. Limnol. Oceanogr. 54, 2315–2329.
  • Maykut G. A. Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 1971; 76: 1550–1575.
  • Mironov, D. V. 2008. Parameterization of Lakes in Numerical Weather Prediction. Description of a Lake Model. Technical Report of COSMO, No. 11. Deutscher Wetterdienst, Offenbach am Main, 41 pp.
  • Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N. and co-authors. 2010. Implementation of the lake parameterization scheme FLake into the numerical weather prediction model COSMO. Boreal Env. Res. 15, 218–230.
  • Nicolaus M. Haas C. Bareiss J. Observations of superimposed ice formation at melt-onset on fast ice on Kongsfjorden, Svalbard. Phys Chem Earth. 2003; 28: 1241–1248.
  • Perovich, D. K. 1996. The optical properties of sea ice. CRREL Monogr. 96–1, 25 pp.
  • Prowse T. D. Marsh P. Thermal budget of river ice covers during break-up. Can. J. Civil Eng. 1989; 16: 62–71.
  • Salgado R. Le Moigne P. Coupling of the FLake model to the Surfex externalized surface model. Boreal Env. Res. 2010; 15: 231–244.
  • Samuelsson P. Kourzeneva E. Mironov D. The impact of lakes on the European climate as simulated by a regional climate model. Boreal Env. Res. 2010; 15: 113–129.
  • Stepanenko, V. M., Goyette, S., Martynov, A., Perroud, M., Fang, X. and co-authors. 2010. First steps of a Lake Model Intercomparison Project: LakeMIP. Boreal Env. Res. 15, 191–202.
  • Sturm M. Holmgren J. König M. Morris K. The thermal conductivity of snow. J. Glaciol. 1997; 43: 26–41.
  • Sturm M. Liston G. E. The snow cover on lakes of the Arctic Coastal Plain of Alaska. J. Glaciol. 2003; 49(166): 370–380.
  • Sturm, M., Perovich, D. K. and Holmgren, J. 2002. Thermal conductivity and heat transfer through the snow and ice of the Beaufort Sea. J. Geophys. Res. Oceans 107(C21), 8043, doi:10.1029/2000JC000409.
  • Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J. and co-authors. 2002. The HIRLAM-5 scientific documentation. 144pp. Online at http://hirlam.org and SMHI, S-60176 Norrköping, Sweden.
  • Vavrus S. J. Wynne R. H. Foley J. A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr. 1996; 41: 822–831.
  • Yang, Y., Leppäranta, M., Cheng, B., Li, Z. and Rontu, L. 2012. Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus, 64A, 17202.