585
Views
6
CrossRef citations to date
0
Altmetric
Numerical weather prediction

Modelling the re-intensification of tropical storm Erin (2007) over Oklahoma: understanding the key role of downdraft formulation

&
Article: 17417 | Received 14 Feb 2012, Accepted 19 Jul 2012, Published online: 14 Aug 2012

References

  • Arndt, D. S, Basara, J. B, McPherson, R. A, Illston, B. G, McManus, G. D and co-author. 2009. Observations of the overland reintensification of tropical storm Erin (2007). Bull. Amer. Meteor. Soc. 90, 1079–1093. 10.3402/tellusa.v64i0.17417.
  • Bhaskar R. D. V. Prasad D. H. Numerical prediction of the Orissa super-cyclone (1999): sensitivity to the parameterization of convection, boundary layer and explicit moisture processes. Mausam. 2006; 57: 61–78.
  • Bister M. Emanuel K. A. The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev. 1997; 125: 2662–2682.
  • Böing, S. J, Jonker, H. J. J, Siebesma, A. P and Grabowski, W. W. 2010. Influence of subcloud-layer structures on the transition to deep convection. 19th Symposium on Boundary-Layers and Turbulence, Keystone, CO, USA, 2–6 August2010.
  • Bosart L. F. Bartlo J. A. Tropical storm formation in a baroclinic environment. Mon. Wea. Rev. 1991; 119: 1979–2013.
  • Braun S. A. Tao W. K. Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev. 2000; 128: 3941–3961.
  • Brennan M. J. Knabb R. D. Mainelli M. Kimberlain T. B. Atlantic hurricane season of 2007. Mon. Wea. Rev. 2009; 137: 4061–4088. 10.3402/tellusa.v64i0.17417.
  • Brock, F. V, Crawford, K. C, Elliott, R. L, Cuperus, G. W, Stadler, S. J and co-authors. 1995. The Oklahoma Mesonet: a technical overview. J. Atmos. Ocean. Tech. 12, 5–19.
  • Chien F. C. Jou B. J. D. MM5 Ensemble mean precipitation forecasts in the Taiwan area for three early summer convective (Mei-Yu) seasons. Wea. Forecasting. 2004; 19: 735–750.
  • Cuxart, J, Holtslag, A. A. M, Beare, R. J, Bazile, E, Beljaars, A and co-authors. 2006. Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound-Layer Meteor. 118, 273–303. 10.3402/tellusa.v64i0.17417.
  • Dudhia J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. 1989; 46: 3077–3107.
  • Dudhia J. A nonhydrostatic version of the Penn State–NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. J. Atmos. Sci. 1993; 121: 1493–1513.
  • Emanuel K. A. Environmental factors affecting tropical cyclone power dissipation. Mon. Wea. Rev. 2007; 20: 5497–5509. 10.3402/tellusa.v64i0.17417.
  • Evans J. L. Hart R. E. Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. J. Climate. 2003; 131: 909–925.
  • Fankhauser J. C. Estimates of thunderstorm precipitation efficiency from field measurements in CCOPE. Mon. Wea. Rev. 1988; 116: 663–684.
  • Ferrier B. S. Simpson J. Tao W.-K. Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev. 1996; 124: 2100–2125.
  • Foote G. B. Fankhauser J. C. Airflow and moisture budget beneath a north–east Colorado hailstorm. Mon. Wea. Rev. 1973; 12: 1330–1353.
  • Fritsch J. M. Chappell C. F. Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J. Appl. Meteor. 1980; 37: 1722–1733.
  • Grell G. A. Prognostic evaluation of assumptions used by cumulus parameterization. J. Atmos. Sci. 1993; 121: 764–787.
  • Grell, G. A, Dudhia, J and Stauffer, D. R. 1995. A Description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note TN-398+STR, 122 pp.
  • Holtslag A. A. M. Boville B. Local versus nonlocal boundary-layer diffusion in a global climate model. 1993; 6: 1825–1842.
  • Hong S. Y. Pan H. L. Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model. J. Climate. 1996; 124: 2332–2339.
  • Janjić Z. I. The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev. 1994; 122: 927–945.
  • Kain J. S. The Kain-Fritsch convective parameterization: an update. Mon. Wea. Rev. 2004; 43: 170–181.
  • Kain, J. S and Fritsch, J. K. 1993. Convective parameterization for mesoscale models: the Kain-Fritsch scheme. J. Appl. Meteor. No. 46, Amer. Meteor. Soc., 165–177.
  • Knabb, R. D. 2008. Tropical Cyclone Report: Tropical Storm Erin. Online at: http://www.nhc.noaa.gov/pdf/TCR-AL052007_Erin.pdf.
  • Knupp K. R. Downdrafts within high plains cumulonimbi. Part I: general kinematic structure. 1987; 44: 987–1008.
  • Knupp K. R. Cotton W. R. Convective cloud downdraft structure: An interpretive survey. 1985; 23: 183–215. 10.3402/tellusa.v64i0.17417.
  • Kong, K and Gedzelman, S. 2004. MM5 Simulations of sub-tropical storm Allison over southern Mississippi Valley. 26th Conf. Hurricanes and Tropical Meteor. Amer. Meteor. Soc. Boston, 2–7 May 2004, Miami, Florida, USA, paper 13C4.
  • Liang X. Z. Xu M. Kunkel K. E. Grell G. A. Kain J. S. Regional climate model simulation of U.S.–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. 2007; 20: 5201–5207. 10.3402/tellusa.v64i0.17417.
  • Liu C. Moncrieff M. W. Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. 2007; 135: 2854–2868. 10.3402/tellusa.v64i0.17417.
  • Market P. S. Allen S. N. Scofield R. Kuligowski R. Gruber A. Precipitation efficiency of warm-season Midwestern mesoscale convective systems. J. Climate. 2003; 18: 1273–1285.
  • Marwitz J. D. Precipitation efficiency of thunderstorms on the High Plains. Mon. Wea. Rev. 1972; 6: 367–370.
  • McFarquhar, G. M, Zhang, H, Heymsfield, G, Halverson, J. B.,Hood, R and co-authors. 2006. Factors affecting the evolution of hurricane Erin (2001) and the distributions of hydrometeors: role of microphysical processes. 63, 127–150. 10.3402/tellusa.v64i0.17417.
  • McPherson R. A, Fiebrich, C. A, Crawford, K. C, Elliott, R. L, Kilby, J. R and co-authors. 2007. Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. Wea. Forecasting. 24, 301–321. 10.3402/tellusa.v64i0.17417.
  • Mellor, G. L and Yamada, T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Res. Atmos. 31, 1791–1806. DOI: http://dx.doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
  • Moncrieff M. W. Liu C.-H. Representing convective organization in prediction models by a hybrid strategy. J. Atmos. Sci. 2006; 63: 3404–3420. 10.3402/tellusa.v64i0.17417.
  • Monteverdi, J. P and Edwards, R. 2008. Documentation of the overland reintensification of Tropical Storm Erin over Oklahoma. August18, 2007. Preprints, In: 24th Conf. on Severe Local Storms. Savannah, GA, Amer. Meteor. Soc., P4.6.
  • Pattnaik S. Krishnamurti T. N. Impact of cloud microphysical processes on hurricane intensity, part 2: sensitivity experiments. J. Atmos. Sci. 2007; 97: 127–147. 10.3402/tellusa.v64i0.17417.
  • Rao D. V. B. Prasad D. H. Sensitivity of tropical cyclone intensification to boundary layer and convective processes. J. Atmos. Sci. 2007; 41: 429–445. 10.3402/tellusa.v64i0.17417.
  • Reisner J. Rasmussen R. M. Bruintjes R. T. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. 1998; 124: 1071–1107. 10.3402/tellusa.v64i0.17417.
  • Rio, C, Hourdin, F, Grandpeix, J. Y and Lafore, J. P. 2009. Shifting the diurnal cycle of parameterized deep convection over land. Meteor. Atmos. Phys. 36, L07809. DOI: 10.3402/tellusa.v64i0.17417.
  • de Rooy W. C. Siebesma A. P. A simple parameterization for detrainment in shallow cumulus. Nat. Hazards. 2008; 136(2): 560–576. 10.3402/tellusa.v64i0.17417.
  • Srinivas C. V. Venkatesan R. Bhaskar Rao D. V. Prasad D. H. Numerical simulation of Andhra severe cyclone (2003): model sensitivity to the boundary layer and convection parameterization. Quart. J. Roy. Meteor. Soc. 2007; 164: 1465–1487. 10.3402/tellusa.v64i0.17417.
  • Steeneveld, G. J, Mauritsen, T, de Bruijn, E. I. F, Vilà-Guerau de Arellano, J, Svensson, G and co-author. 2008. Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. Geophys. Res. Lett. 47, 869–887. 10.3402/tellusa.v64i0.17417.
  • Stensrud, D. J. 2007. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press: Cambridge, 459. pp.
  • Troen I. B. Mahrt L. A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Pure Appl. Geophys. 1986; 37: 129–148. 10.3402/tellusa.v64i0.17417.
  • Wang W. Seaman N. L. A comparison study of convective parameterization schemes in a mesoscale model. J. Appl. Meteor. Climatol. 1997; 125: 252–278.
  • Wisse J. S. P. Vilà-Guerau de Arellano J. Analysis of the role of the planetary boundary layer schemes during a severe convective storm. 2004; 22: 1861–1874. 10.3402/tellusa.v64i0.17417.
  • Zhang D-L. Fritsch J. M. Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. Bound-Layer Meteorol. 1986; 43: 1913–1943.