542
Views
14
CrossRef citations to date
0
Altmetric
Dynamic meteorology

Balanced thermal structure of an intensifying tropical cyclone

Article: 19181 | Received 23 Jul 2012, Accepted 30 Oct 2012, Published online: 11 Dec 2012

References

  • Bister M. Emanuel K. A. The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev. 1997; 125: 2662–2682.
  • Bolin B. Numerical forecasting with the barotropic model. Tellus. 1955; 7: 27–49. 10.3402/tellusa.v64i0.19181.
  • Bolin B. An improved barotropic model and some aspects of using the balance equations for three-dimensional flow. Tellus. 1956; 8: 61–75. 10.3402/tellusa.v64i0.19181.
  • Charney J. G. The use of primitive equations of motion in numerical prediction. Tellus. 1955; 7: 22–26. 10.3402/tellusa.v64i0.19181.
  • Cho H.-R. Jenkins M. A. The thermal structure of tropical easterly waves. 1987; 44: 2531–2539.
  • Davis C. A. Piecewise potential vorticity inversion. J. Atmos. Sci. 1992; 49: 1397–1411.
  • Davis C. A. Trier S. B. Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. J. Atmos. Sci. 2007; 135: 2029–2049. 10.3402/tellusa.v64i0.19181.
  • Elsberry R. L. Harr P. A. Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Mon. Wea. Rev. 2008; 44: 209–231.
  • Folkins I. Martin R. V. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. Asia-Pacific J Atmos Sci. 2005; 62: 1560–1573. 10.3402/tellusa.v64i0.19181.
  • Hoskins B. J. McIntyre M. E. Robertson A. W. On the use and significance of isentropic potential vorticity maps. J. Atmos. Sci. 1985; 111: 877–946. 10.3402/tellusa.v64i0.19181.
  • Johnson R. H. Ciesielski P. E. Hart K. A. Tropical inversions near the 0°C level. Quart. J. Roy. Meteor. Soc. 1996; 53: 1838–1855.
  • Johnson R. H. Rickenbach T. M. Rutledge S. A. Ciesielski P. E. Schubert W. H. Trimodal characteristics of tropical convection. J. Atmos. Sci. 1999; 12: 2397–2418.
  • Lorenz E. N. Energy and numerical weather prediction. J. Climate. 1960; 12: 364–373. 10.3402/tellusa.v64i0.19181.
  • McWilliams J. C. A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. Tellus. 1985; 42: 1773–1774.
  • Montgomery, M. T, Lussier III, L. L, Moore, R. W and Wang, Z, 2010. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 1: The role of the easterly wave critical layer. J. Atmos. Sci. 10, 9879–9900. 10.3402/tellusa.v64i0.19181.
  • Montgomery M. T. Smith R. K. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment. Atmos. Chem. Phys. 2012; 12: 4001–4009. 10.3402/tellusa.v64i0.19181.
  • Peixoto, J. P and Oort, A. H. 1992. American Institute of Physics, College Park, Maryland, pp. 520.
  • Raymond D. J. Nonlinear balance and potential-vorticity thinking at large Rossby number. Physics of climate. 1992; 118: 987–1015. 10.3402/tellusa.v64i0.19181.
  • Raymond D. J. Nonlinear balance on an equatorial beta plane. Quart. J. Roy. Meteor. Soc. 1994; 120: 215–219. 10.3402/tellusa.v64i0.19181.
  • Raymond D. J. Testing a cumulus parametrization with a cumulus ensemble model in weak-temperature-gradient mode. Quart. J. Roy. Meteor. Soc. 2007; 133: 1073–1085. 10.3402/tellusa.v64i0.19181.
  • Raymond D. J. López Carrillo C. The vorticity budget of developing typhoon Nuri (2008). Quart. J. Roy. Meteor. Soc. 2011; 11: 147–163. 10.3402/tellusa.v64i0.19181.
  • Raymond, D. J and Sessions, S. L. 2007. Evolution of convection during tropical cyclogenesis. Atmos. Chem. Phys. 34, L06811. DOI:10.3402/tellusa.v64i0.19181.
  • Raymond, D. J, Sessions, S. L and López Carrillo, C. 2011. Thermodynamics of tropical cyclogenesis in the northwest Pacific. Geophys. Res. Letters. 116, D18101. DOI: 10.3402/tellusa.v64i0.19181.
  • Raymond D. J. Zeng X. Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. J. Geophys. Res. 2005; 131: 1301–1320. 10.3402/tellusa.v64i0.19181.
  • Reed R. J. Recker E. E. Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc. 1971; 28: 1117–1133.
  • Schubert W. H. Alworth B. T. Evolution of potential vorticity in tropical cyclones. J. Atmos. Sci. 1987; 113: 147–162. 10.3402/tellusa.v64i0.19181.
  • Sobel A. H. Bretherton C. S. Modeling tropical precipitation in a single column. Quart. J. Roy. Meteor. Soc. 2000; 13: 4378–4392.
  • Sobel A. H. Nilsson J. Polvani L. M. The weak temperature gradient approximation and balanced tropical moisture waves. J. Climate. 2001; 58: 3650–3665.
  • Thorpe A. J. Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci. 1985; 42: 397–406.
  • Zipser E. J. The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Atmos. Sci. 1969; 8: 799–814.