418
Views
7
CrossRef citations to date
0
Altmetric
Data assimilation and predictability

The EUMETSAT OSI SAF near 50 GHz sea ice emissivity model

, , , &
Article: 18380 | Received 20 Mar 2012, Accepted 29 Jan 2013, Published online: 25 Feb 2013

References

  • Aires, F, Prigent, C, Bernardo, F, Jimenez, C, Saunders, R. and co-authors. 2010. A tool to estimate land surface emissivities at microwaves frequencies (TELSEM) for use in numerical weather prediction. Q. J. Roy. Meteor. Soc. 137, 690–699. DOI: 10.3402/tellusa.v65i0.18380.
  • Comiso J. C. Cavalieri D. J. Parkinson C. L. Gloersen P. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sens. Environ. 1997; 60: 357–384. 10.3402/tellusa.v65i0.18380.
  • Drusch, M, Holmes, T, de Rosnay, P and Balsamo, G. 2009. Comparing ERA-40 based L-band brightness temperatures with skylab observations: a calibration/validation study using the community microwave emission model. J. Hydrometeorol. 10, 213–226. DOI: 10.3402/tellusa.v65i0.18380.
  • English S. J. The importance of accurate skin temperature in assimilating radiances from satellite sounding instruments. IEEE T. Geosci. Remote. 2008; 46(2): 403–408. 10.3402/tellusa.v65i0.18380.
  • Harlow R. C. Sea ice emissivities and effective temperatures at MHS frequencies: an analysis of airborne microwave data measured during two Arctic campaigns. IEEE T. Geosci. Remote. 2011; 49(4): 1223–1237. 10.3402/tellusa.v65i0.18380.
  • Heygster, G, Melsheimer, C, Mathew, N, Toudal, L, Saldo, R. and co-authors. 2009. POLAR PROGRAM: integrated observation and modeling of the Arctic sea ice and atmosphere. B. Am. Meteorol. Soc. 90, 293–297. 10.3402/tellusa.v65i0.18380.
  • Karbou F. Gérard E. Rabier F. Microwave land emissivity and skin temperature for AMSU-A & -B assimilation over land. Q. J. Roy. Meteor. Soc. 2006; 132(620): 2333–2355. 10.3402/tellusa.v65i0.18380.
  • Karbou F. Rabier F. Lafore J.-P. Redelsperger J.-L. Bock O. Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part II: Impacts of assimilating surface sensitive channels on the African monsoon during AMMA. Weather. Forecast. 2010; 25: 20–36. 10.3402/tellusa.v65i0.18380.
  • Kongoli C. Boukabara S.-A. Yan B. Weng F. Ferraro R. A new sea-ice concentration algorithm based on microwave surface emissivities – application to AMSU measurements. IEEE T. Geosci. Remote. 2011; 49(1): 175–189. 10.3402/tellusa.v65i0.18380.
  • Kunkee, D. B, Poe, G. A, Boucher, D. J, Swadley, S. D, Hong, Y. and co-authors. 2008. Design and evaluation of the first special sensor microwave imager/sounder. IEEE T. Geosci. Remote. 46(4), 863–883. 10.3402/tellusa.v65i0.18380.
  • Mathew N. Heygster G. Melsheimer C. Kaleschke L. Surface emissivity of Arctic sea ice at AMSU window frequencies. IEEE T. Geosci. Remote. 2008; 46(8): 2298–2306. 10.3402/tellusa.v65i0.18380.
  • Mätzler C. On the determination of surface emissivity from satellite observations. IEEE Geosci. Remote S. 2005; 2(2): 160–163. 10.3402/tellusa.v65i0.18380.
  • Mätzler, C, Rosenkranz, P. W, Battaglia, A. and Wigneron, J. P. 2006. Thermal Microwave Radiation – Applications for Remote Sensing. IEE Electromagnetic Waves Series: London.
  • Mo T. Prelaunch calibration of the advanced microwave sounding unit-A for NOAA-K. IEEE T. Microw. Theory. 1996; 44(8): 1460–1469. 10.3402/tellusa.v65i0.18380.
  • Narvekar P. S. Heygster G. Tonboe R. Jackson T. J. Analysis of WindSat third and fourth stokes components over Arctic sea ice. IEEE T. Geosci. Remote. 2011; 49(5): 1627–1636. 10.3402/tellusa.v65i0.18380.
  • Patterson, T. 2010. SSMIS SDR BUFR Format. EUM/OPS/TEN/10/1665, EUMETSAT.
  • Saunders R. W. Matricardi M. Brunel P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. Roy. Meteor. Soc. 1999; 125: 1407–1425.
  • Thyness, V. W, Toudal Pedersen, L, Schyberg, H and Tveter, F. T. 2005. Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var. In: ITSC XIV Proceedings. BeijingChina.
  • Tonboe, R. T. 2005. A mass and thermodynamic model for sea ice. Danish Meteorological Institute Scientific Report 05–10, p. 12.
  • Tonboe R. T. The simulated sea ice thermal microwave emission at window and sounding frequencies. Tellus A. 2010; 62: 333–344. 10.3402/tellusa.v65i0.18380.
  • Tonboe R. T. Dybkjær G. Høyer J. L. Simulations of the snow covered sea ice surface temperature and microwave effective temperature. Tellus A. 2011; 63: 1028–1037. 10.3402/tellusa.v65i0.18380.
  • Ulaby, F. T, Moore, R. K and Fung, A. K. 1982. Microwave remote sensing, active and passive. Vol. II, Artech House: Norwood MA.
  • Ulaby, F. T, Moore, R. K and Fung, A. K. 1986. Microwave remote sensing, active and passive. Vol. III, Artech House: Norwood MA.
  • Weng F. Yan B. Grody N. C. A microwave land emissivity model. J. Geophys. Res. 2001; 106(D17): 20115–20123. 10.3402/tellusa.v65i0.18380.
  • Wiesmann A. Mätzler C. Microwave emission model of layered snowpacks. Remote Sens. Environ. 1999; 70(3): 307–316. 10.3402/tellusa.v65i0.18380.
  • Willmes S. Haas C. Nicolaus M. High radar-backscatter regions on Antarctic sea-ice and their relation to sea-ice and snow properties and meteorological conditions. Int. J. Remote Sens. 2011; 32(14): 3967–3984. 10.3402/tellusa.v65i0.18380.