328
Views
2
CrossRef citations to date
0
Altmetric
Dynamic meteorology

Large-scale dynamical influence of a gravity wave generated over the Antarctic Peninsula – regional modelling and budget analysis

Article: 20254 | Received 12 Dec 2012, Accepted 28 Jan 2013, Published online: 11 Mar 2013

References

  • Andrews D. G. McIntyre M. E. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 1976; 33: 2031–2048.
  • Arnault, J and Kirkwood, S. 2012. Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: radar observations, fine-scale modelling and kinetic energy budget analysis. Tellus A. 64, 17261. 10.3402/tellusa.v65i0.20254.
  • Arnault J. Roux F. Case study of a developing African easterly wave during NAMMA: an energetic point of view. J. Atmos. Sci. 2009; 66: 2991–3020. 10.3402/tellusa.v65i0.20254.
  • Chen C.-C. Hakim G. J. Durran D. R. Transient mountain waves and their interaction with large scales. J. Atmos. Sci. 2007; 64: 2378–2400. 10.3402/tellusa.v65i0.20254.
  • Chou, M.-D., and Suarez, M. J. 1994. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606. 3, 85. pp.
  • Durran R. D. Klemp J. B. A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev. 1983; 111: 2341–2361.
  • Durran R. D. Klemp J. B. Do breaking mountain waves decelerate the local mean flow?. J. Atmos. Sci. 1995; 22: 4010–4032.
  • Fritts D. C. Alexander M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003; 41(1): 1–64. 10.3402/tellusa.v65i0.20254.
  • Fritts D. C. Arendt S. Andreassen Ø.The vorticity dynamics of instability and turbulence in a breaking internal gravity wave. Earth Planets Space. 1999; 51: 457–473.
  • Héreil P. Stein J. Momentum budgets over idealized orography with a non-hydrostatic anelastic model. I: two-dimensional flows. Quart. J. Roy. Meteor. Soc. 1999; 125: 2019–2051.
  • Hong S.-Y. Dudhia J. Chen S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev. 2004; 132: 103–120.
  • Hong S.-Y. Noh Y. Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006; 134: 2318–2341. 10.3402/tellusa.v65i0.20254.
  • Kain J. S. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteor. 2004; 43: 170–181.
  • Kinoshita, T, Tomikawa, Y and Sato, K. 2010. On the three dimensional residual circulation and wave activity flux of the primitive equations. J. Met. Soc. Jap. 88, 373–394. 10.3402/tellusa.v65i0.20254.
  • Klemp J. B. Skamarock W. C. Dudhia J. Conservation split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev. 2007; 135: 2897–2913. 10.3402/tellusa.v65i0.20254.
  • Lilly D. K. Wave momentum flux – A GARP problem. Bull. Amer. Meteor. Soc. 1972; 53: 17–23.
  • Lilly D. K. Kennedy P. J. Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci. 1973; 30: 1135–1152.
  • Lorenz E. N. Available potential energy and the maintenance of the general circulation. Tellus. 1955; 7: 157–167. 10.3402/tellusa.v65i0.20254.
  • Mlawer E. J. Taubman S. J. Brown P. D. Iacono M. J. Clough S. A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long- wave. J. Geophys. Res. 1997; 102(D14): 16663–16682. 10.3402/tellusa.v65i0.20254.
  • Plougonven, R, Hertzog, A and Teitelbaum, H. 2008. Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula. J. Geophys. Res. 113, D16113. 10.3402/tellusa.v65i0.20254.
  • Réchou, A, Arnault, J, Dalin, P and Kirkwood, S. 2013. Case-study of stratospheric gravity waves of convective origin over Arctic Scandinavia – VHF radar observations and numerical modelling. Ann. Geophys. 31, 239–250. 10.3402/tellusa.v65i0.20254.
  • Scavuzzo C. M. Lamfri M. A. Teitelbaum H. Lott F. A study of the low-frequency inertio–gravity waves observed during the Pyrénées Experiment. J. Geophys. Res. 1998; 103: 1747–1758. 10.3402/tellusa.v65i0.20254.
  • Skamarock W. C. Klemp J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comp. Phys. 2008; 227: 3465–3485. 10.3402/tellusa.v65i0.20254.
  • Spiga A. Teitelbaum H. Zeitlin V. Identification of the sources of inertia–gravity waves in the Andes Cordillera region. Ann. Geophys. 2008; 26: 2551–2568. 10.3402/tellusa.v65i0.20254.
  • Vadas S. L. Fritts D. C. Alexander M. J. Mechanisms for the generation of secondary waves in wave breaking regions. J. Atmos. Sci. 2003; 60: 194–214.
  • Watanabe, S, Kawatani, Y, Tomikawa, Y, Miyazaki, K, Takahashi, M and Sato, K. 2008. General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res. 113, D12110. 10.3402/tellusa.v65i0.20254.
  • Zülicke, C and Peters, D. H. W. 2006. Simulation of inertia–gravity waves in a poleward breaking Rossby wave. J. Atmos. Sci. 63, 3253–3276. 10.3402/tellusa.v65i0.20254.