2,223
Views
12
CrossRef citations to date
0
Altmetric
Dynamic Meteorology

Sensitivity of Tropical Cyclone Tracks and Intensity to Ocean Surface Temperature: Four Cases in Four Different Basins

, , &
Article: 24212 | Received 27 Feb 2014, Accepted 22 Jun 2014, Published online: 18 Jul 2014

References

  • Anthes R . Tropical Cyclones: Their Evolution, Structure and Effects.
  • Bartels D. L. , Maddox R. A . Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Weather Rev. 1991; 119: 104–118.
  • Bengtsson L . Enhanced hurricane threats. Science. 2001; 293: 440–441.
  • Bengtsson L. , Botzest M. , Esch M . Hurricane-type vortices in a general circulation model. Tellus A. 1995; 47: 175–196.
  • Bengtsson L. , Hodges K. I. , Esch M. , Keenlyside N. , Kornblueh L. , co-authors . How may tropical cyclones change in a warmer climate?. Tellus A. 2007; 59: 539–561.
  • Bosart L. F. , Sanders F . The Johnstown flood of July 1977: a long-lived convective storm. J. Atmos. Sci. 1981; 38: 1616–1642.
  • Chan J . Tropical cyclone motion. Topic Chairman and Rapporteur Report. 5th WMO International Workshop on Tropical Cyclones (IWTC-V), Cairns, Australia. 2002; Geneva, Switzerland: World Meteorological Organization. 1317–1336. WMO/TD No. 1136.
  • Chan J . The physics of tropical cyclone motion. Annu. Rev. Fluid. Mech. 2005; 37: 99–128.
  • Chan J. , Gray W. M . Tropical cyclone movement and surrounding flow relationship. Mon. Weather Rev. 1982; 110: 1354–1376.
  • Chan J. C. L. , Ko F. M. F. , Lei Y. M . Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci. 2002; 59: 1317–1336.
  • Charney J. G. , Eliassen A . On the growth of the hurricane depression. J. Atmos. Sci. 1964; 21: 68–75.
  • Chen S. S. , Frank W. M . A numerical study of the genesis of extratropical convective mesovortices. Part I: evolution and dynamics. J. Atmos. Sci. 1993; 50: 2401–2426.
  • Chen T. C. , Wang S.-Y. , Yen M.–C. , Gallus W. A. Jr. . Role of the monsoon gyre in the interannual variation of tropical cyclone formation over the western North Pacific. Weather Forecast. 2004; 19: 776–785.
  • Craig G. , Gray S . CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 1996; 53(23): 3528–3540.
  • Davis C. A. , Galarneau T. J . The vertical structure of mesoscale convective vortices. J. Atmos. Sci. 2009; 66: 686–704.
  • DeMaria M. , Knaff J. , Connell B . A tropical cyclone genesis parameter for the Atlantic. Weather Forecast. 2001; 16: 219–233.
  • Doswell C . Severe convective storms. American Meteorological Society. Meterol. Monogr. 2001; 28(50): 561.
  • Emanuel K. A . An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 1986; 43: 585–605.
  • Fang J. , Zhang F . Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci. 2010; 67: 655–672.
  • Fang J. , Zhang F . Evolution of multi-scale vortices in the development of hurricane Dolly (2008). J. Atmos. Sci. 2011; 68: 103–122.
  • Flatau M. , Schubert W. H. , Stevens D. E . The role of baroclinic processes in tropical cyclone motion: the influence of vertical tilt. Z. Atmos. Sci. 1994; 51: 2589–2601.
  • Fritsch J. M. , Maddox R. A . Convective driven mesoscale weather systems aloft. Part I: observation. J. Appl. Meteorol. 1981a; 20: 9–19.
  • Fritsch J. M. , Maddox R. A . Convective driven mesoscale weather systems aloft. Part II: numerical simulations. J. Appl. Meteorol. 1981b; 20: 20–26.
  • Gray W. M . Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968; 96: 669–700.
  • Gray W. M . The formation of tropical cyclones. Meteorol. Atmos. Phys. 1998; 67: 37–69.
  • Gray W. M . Shaw D. B . Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology Over the Tropical Oceans. 1979; James Glaisher House, Berkshire: BMS. 155–218.
  • Gray W. M . Seasonal forecasting. Global Guide to Tropical Cyclone Forecasting WMO Technical Document N 560. 1993; Switzerland: Geneva. 5.1–5.21. Tropical Cyclone Program Report N31.
  • Harr P. A. , Elsberry R. L . Structure of a mesoscale convective system embedded in Typhoon Robyn during TCM-93. Mon. Weather Rev. 1996; 124: 634–652.
  • Hart R. E . A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003; 131: 585–616.
  • Hendricks E. A. , Montgomery M. T . Rapid scan views of convectively generated mesovortices in sheared Tropical Cyclone Gustav (2002). Weather Forecast. 2006; 21: 1041–1050.
  • Holland G. J . Tropical cyclone motion: a comparison of theory and observation. J. Atmos. Sci. 1984; 41: 68–75.
  • Holland G. J. , Belanger J. , Fritz A . A revised model for radial profiles of hurricane winds. Mon. Weather Rev. 2010; 138: 4393–4401.
  • Holland G. J. , Leslie L. M. , Ritchie E. A. , Dietachmayer G. S. , Klink M. , co-authors . An interactive analysis and forecasting system for tropical cyclone motion. Weather Forecast. 1991; 6: 415–423.
  • Hong S.-Y. , Dudhia J. , Chen S.-H . A revised approach to ice microphysical processes for the parameterization of clouds and precipitation. Mon. Weather Rev. 2004; 132: 103–120.
  • Houze R . Mesoscale convective systems. Rev. Geophys. 2004; 42: 4003.
  • Houze R . Clouds in tropical cyclones. Mon. Weather Rev. 2010; 138: 293–344.
  • Jorgensen D. P . Mesoscale and convective-scale characteristics of mature hurricanes. Part I: general observations by research aircraft. J. Atmos. Sci. 1984b; 41: 1268–1285.
  • Jorgensen D. P . Mesoscale and convective scale characteristic of mature hurricanes. Part II: inner core structure of hurricane Allen (1984). J. Atmos. Sci. 1984a; 41: 1287–1311.
  • Kain J. S . The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol. 2004; 43: 170–181.
  • Kalnay E. , Kanamitsu M. , Kistler R. , Collins W. , Deaven D. , co-authors . The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996; 77: 437–472.
  • Kruk M. C. , Knapp K. R. , Levinson D. H. , Kossin J . A technique for combining global tropical cyclone best track data. J. Atmos. Ocean. Technol. 2010; 27: 680–692.
  • Lander M. A . Description of a monsoon gyre and its effect on the tropical cyclones in the western North Pacific during August 1991. Weather Forecast. 1996; 9: 640–654.
  • Lee C.-S. , Cheung K. K. W. , Hui J. S. N. , Elsberry R. L . Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Weather Rev. 2008; 26: 2006–2022.
  • Leslie L. M. , Holland G. J . On the bogussing of tropical cyclones in numerical models: a comparison of vortex profiles. Meteorol. Atmos. Phys. 1995; 56: 101–110.
  • Luo J. , Behera S. , Masumoto Y. , Yamagata T . Impact of global ocean surface warming on seasonal-to-interannual climate prediction. J. Clim. 2011; 24: 1626–1646.
  • Maddox R. A . Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980; 16: 1374–1387.
  • Maloney E. D. , Hartmann D. L . Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian Oscillation. Science. 2000; 287: 2002–2004.
  • McBride J. L. , Fraedrich K . CIS: A theory for the response of tropical convective complexes to variations in sea surface temperature. Quart. J. Roy. Meteor. Soc. 1995; 121: 783–796.
  • Miller D. , Fritsch J. M . Mesoscale convective complexes in the western Pacific region. Mon. Weather. Rev. 1991; 117: 2978–2922.
  • Montgomery M. T. , Nicholls M. E. , Cram T. A. , Saunders A. B . A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci. 2006; 63: 355–386.
  • Nolan D. S. , Moon Y. , Stern D. P . Tropical cyclone intensification from asymmetric convection: energetics and efficiency. J. Atmos. Sci. 2007; 64: 3377–3405.
  • Ookuchi K. , Yoshimura J. , Yoshimura H. , Mizuta R. , Kusunoki S. , co-authors . Tropical cyclone climatology in a global warming climate as simulated in a 20-km-mesh global atmospheric model: frequency and wind intensity analysis. J. Meteorol. Soc. Jap. 2006; 84: 259–276.
  • Powell M. , Soukup G. , Cocke S. , Gulati S. , Morisseau-Leroy N. , co-authors . State of Florida hurricane loss prediction model: atmospheric science component. J. Wind Eng. Ind. Aerodyn. 2005; 93: 651–674.
  • Reasor P. D. , Montgomery M. T. , Bosart L. F . Mesoscale observations in the genesis of Hurricane Dolly (1996). J. Atmos. Sci. 2005; 62: 3151–3171.
  • Ren D . Effects of global warming on wind energy availability. J. Renew. Sustain. Energ. 2010; 2: 052301.
  • Ren D . The devastating Zhouqu Storm-triggered debris flow of August 2010: likely causes and possible trends in a future warming climate. J. Geophys. Res. 2014a; 119: 3643–3662.
  • Ren D . Storm-Triggered Landslides in a Warming Climate. 2014b; New York: Springer.
  • Ren D. , Fu R. , Leslie L. M. , Dickinson R. E . Predicting storm-triggered landslides. 2011; 92: 129–139. BAMS.
  • Ren D. , Leslie L. M . Three positive feedback mechanisms for ice sheet melting in a warming climate. J. Glaciol. 2011; 57(206): 1057.
  • Ritchie E. A. , Holland G. J . Scale interactions during the formation of Typhoon Irving. Mon. Weather Rev. 1997; 125: 1377–1396.
  • Ritchie E. A. , Holland G. J . Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Weather Rev. 1999; 127: 2027–2043.
  • Rogers R. F. , Fritsch J. M . Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Weather Rev. 2001; 129: 605–637.
  • Schulz J. , Meywerk J. , Ewald S. , Schlussel P . Evaluation of satellite-derived latent heat fluxes. J. Clim. 1997; 10: 2782–2795.
  • Shapiro L. J . The motion of Hurricane Gloria: a potential vorticity diagnosis. Mon. Weather Rev. 1996; 124: 1497–2508.
  • Shapiro L. J. , Franklin J. L . Potential vorticity asymmetries and tropical cyclone motion. Mon. Weather Rev. 1999; 127: 124–131.
  • Sippel J. A. , Nielsen-Gammon J. W. , Allen S. E . The multiple-vortex nature of tropical cyclogenesis. Mon. Weather Rev. 2006; 134: 1796–1814.
  • Skamarock W. C. , Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , co-authors . A description of the Advanced Research WRF Version 3.
  • Tory K. J. , Frank W. M . Chan J. C. L. , Kepert J. D . Tropical cyclone formation. Global Perspectives on Tropical Cyclones: From Science to Mitigation. 2010; World Scientific on Asia-Pacific Weather and Climate, Volume 4, World Scientific Publishing Co. Pty. Ltd., Singapore. 55–91.
  • Walsh K. , Fiorino M. , Landsea C. , McInnes K . Objectively-determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Clim. 2007; 20: 2307–2314.
  • Webster P. , Holland G. , Curry J. , Chang H . Changes in tropical cyclone number, duration, and intensity in a warming environment. Science. 2005; 309: 1844–1846.
  • Wheeler M. , Hendon H . An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Weather Rev. 2004; 132: 1917–1932.
  • Wu C. , Emanuel K. A . Interaction of a baroclinic vortex with background shear: application to hurricane movement. J. Atmos. Sci. 1993; 50: 62–76.
  • Wu L. , Wang B . Assessing impact of global warming on tropical cyclone tracks. J. Clim. 2004; 17: 1686–1698.
  • Yanai M. , Esbensen S. , Chu J . Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 1973; 30: 611–627.
  • Zehr R. M . Tropical Cyclogenesis in the Western North Pacific. 1992; Washington, DC: U. S. Department of Commerce. 181. NOAA Technical Report NESDIS 61.