118
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

The effects of microphysical parameterization on model predictions of sulfate production in clouds

&
Pages 272-284 | Received 25 Oct 1988, Accepted 04 Jul 1989, Published online: 18 Jan 2017

References

  • Barth, M. C., Hegg, D. A., Hobbs, P. V., Walega, J. G., Kok, G. L., Heikes, B. G. and Lazrus, A. L. 1989. Measurements of atmospheric gas-phase and aqueous-phase hydrogen peroxide concentrations in winter on the East Coast of the United States. Tellus 41B, 61–69.
  • Chameides, W. L. 1984. The photochemistry of a remote marine stratiform cloud. J. Geophys. Res. 89, 4739–4756.
  • Charlson, R. J., Vanderpol, A. H., Covert, D. S., Waggoner, A. P. and Ahlquist, N. C. 1974. Sulfuric acid-ammonium sulfate aerosol: optical detection in the St. Louis region. Science 184, 165–168.
  • Daum, P. H., Schwartz, S. E. and Newman, L. 1984a. Acidic and related constituents in liquid water stratiform clouds. J. Geophys. Res. 89, 1447–1458.
  • Daum, P. H., Kelly, T. J., Schwartz, S. E. and Newman, L. 1984b. Measurements of chemical com-position of stratiform clouds. Atmos. Environ. 18, 2671–2684.
  • Easter, R. C. and Hales, J. M. 1983. Interpretation of the OSCAR data for reactive gas scavenging. In: Precipitation Scavenging, Dry Deposition and Resuspension (eds. H. R. Pruppacher, R. G. Semonin and W. G. Slinn). Elsevier, New York, 649–662.
  • Flossman, A. I., Hall, W. D. and Pruppacher, H. R. 1985. A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci. 42, 583–606.
  • Flossman, A. I., Pruppacher, H. R. and Topalian, J. H. 1987. A theoretical study of the wet removal of atmospheric pollutants. Part II: The uptake and redistribution of (NH4)2SO4 particles and SO2 gas simultaneously scavenged by growing cloud drops. J. Atmos. Sci. 44, 2912–2923.
  • Fuchs, N. A. and Sutugin, A. G. 1970. Highly dispersed aerosols. Ann Arbor Science Publisher, Ann Arbor, MI., pp. 105.
  • Fukuta, N. and Walters, L. A. 1970. Kinetics of hydrometeor growth from a vapor spherical model. J. Atmos. Sci. 27, 1160–1172.
  • Georgii, H. W. and Meixner, F. X. 1980. Measurement of the tropospheric and stratospheric SO2 distri-bution. J. Geophys. Res. 85, 7433–7438.
  • Goldberg, C. L. and Parker, N. 1985. Review of activities of sulfur species in solution. J. Res. Nat. Bur. Stds. 90, 341–358.
  • Hegg, D. A., and Hobbs, P. V. 1979. The homogeneous oxidation of SO2 in cloud drops. Atmos. Environ. 13, 981–987.
  • Hegg, D.A., and Hobbs, P. V. 1982. Measurements of sulfate production in natural clouds. Atmos. Environ. 16, 2663–2668.
  • Hegg, D. A. and Hobbs, P. V. 1986. Sulfate and nitrate chemistry in cumuliform clouds. Atmos. Environ. 20, 901–909.
  • Hegg, D. A., Rutledge, S. A. and Hobbs, P. V. 1984. A numerical model for sulfur chemistry in warm-frontal rainbands. J. Geophys. Res, 89, 7133–7149.
  • Hegg, D. A., Rutledge, S. A. and Hobbs, P. V. 1986. A numerical model of sulfur and nitrogen scavenging in narrow cold frontal rainbands. II. Discussion of chemical fields. J. Geophys. Res. 91, 14404–14416.
  • Heikes, B. G., Kok, G. L., Lazrus, A. L. and Walega, J. G. 1987. H202, 03 and SO2 measurements in the lower troposphere over the eastern USA during fall. J. Geophys. Res. 92, 915–932.
  • Hong, M. S. and Carmichael, G. R. 1983. An investigation of sulfate production in clouds using a flow-through chemical reactor model approach. J. Geophys. Res. 88, 10733–10743.
  • Howell, W. E. 1949. The growth of cloud drops in uniformly cooled air. J. Met, 6, 134–145.
  • Hough, A. M. 1987. A computer modeling study of the chemistry occurring during cloud formation over hills. Atmos. Environ. 21, 1073–1095.
  • Jacob, D. J. and Hoffman, M. R. 1983. A dynamic model for the production of H+, NO.;, and SO: in urban fog. J. Geophys. Res. 88, 6611–6621.
  • Jensen, J. B., and Charlson, R. J. 1984. On the efficiency of nucleation scavenging. Tellus 36B, 267–375.
  • Kelly, T. J., Daum, P. H. and Schwartz, S. E. 1985. Measurements of peroxides in cloudwater and rain. J. Geophys. Res. 90, 7861–7871.
  • Kusik, C. L. and Meissner, H. D. 1978. Electrolytic activity coefficients in inorganic processing. A. I. Ch. E. Symp. Ser. 173,14–20.
  • Lazrus, A. L., Haagenson, P. L., Kok, G. L., Huebert, D. J., Kreitzberg, C. W., Likens, G. E., Mohnen, V. A., Wilson, W. E. and Winchester, J. W. 1983: Acidity in air and water in the case of warm-frontal precipitation. Atmos. Environ. 17, 581–592.
  • Leaitch, W. R., Strapp, J. W., Wiebe, H. A. and Isaac, G. A. 1983. Measurements of scavenging and trans-formation of aerosol inside cumulus. In: Precipitation scavenging, dry deposition and resuspension (eds. H. R. Pruppacher, R. G. Semonin and W. G. Slinn). Elsevier, New York, 53–66.
  • Leaitch, W. R., Strapp, H. A., Isaac, G. A. and Hudson, J. G. 1986. Cloud droplet nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres. Tellus 38B, 328–344.
  • Lee, L. Y. and Shannon, J. D. 1985. Indications of non-linearities in processes of wet deposition. Atmos. Environ. 19, 143–150.
  • Maahs, H. G., 1983. Measurements of the oxidation rate of sulfur (IV) by ozone in aqueous solution and their relevance to SO2 conversion in non-urban tropospheric clouds. Atmos. Environ. 17,341–346.
  • Maroulis, P. J., Torres, A. L., Goldberg, A. B. and Bandy, A. R. 1980. Atmospheric SO2 measurements on project game tag. J. Geophys. Res. 85, 7345–7349.
  • Mason, B. J. and Chien, C. W. 1962. Cloud-droplet growth by condensation in cumulus. Q. J. R. Met. Soc. 88, 133–138.
  • Meszaros, A., 1978. On the concentration and size distribution of atmospheric sulfate particles under rural conditions. Atmos. Environ. 12, 2425–2428.
  • Mozurkewich, M. 1986. Aerosol growth and the con-densation coefficient. Aerosol Sci. & Tech. 5, 223–236.
  • Noone, K. J., Charlson, R. J., Covert, D. S., Ogren, J. A. and Heintzenberg, J. 1988. Cloud droplets: Solute concentration is size dependent. J. Geophys. Res. 93, 9477–9482.
  • NRC, 1984. Global tropospheric chemistry, a plan for action. National Academy Press, Washington, DC.Penkett, S. A., Jones, B. M., Brice, A. and Eggleton, A. E. 1979. The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulfur dioxide in clouds and rainwater. Atmos. Environ. 13, 123–127.
  • Perdue, E. M. and Beck, K. C., 1988. Chemical conse-quences of mixing atmospheric droplets of varied pH. J. Geophys. Res. 93, 691–698.
  • Schwartz, S. E., 1986. Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. In: Chemistry of multiphase atmospheric systems (ed. W. Jaeschke). Springer-Verlag, Berlin, 415–471.
  • Schwartz, S. E. and Freiberg, J. E. 1981. Mass-trans-port limitation to the rate of reaction of gases in liquid droplets: application to oxidation of SO2 in aqueous solutions. Atmos. Environ. 15,1129–1144.
  • Silverman, B. A. and Glass, M. 1973. A numerical simulation of warm cumulus clouds: Part 1. Parameterized vs. non-parameterized microphysics. J. Atmos. Sci. 30, 1620–1637.
  • Tanner, R. L., Kumer, R. and Johnson, S. 1984. Vertical distribution of aerosol strong acid and sulfate in the atmosphere. J. Geophys. Res. 89, 7149–7158.
  • Trembley, A. and Leighton, H. 1984. The influence of cloud dynamics upon the redistribution and transfor-mation of atmospheric S02—a numerical simulation. Atmos. Environ. 18, 1885–1894.
  • Twohy, C. H., Austin, P. H. and Charlson, R. J. 1989. Chemical consequences of the initial diffusional growth of cloud droplets: a clean marine case. Tellus 41B, 51–60.
  • Twomey, S. and Wojciechowski, T. A. 1969. Obser-vations of the geographical variation of cloud nuclei. J. Atmos. Sci. 26, 684–688.
  • Van Valin, C. C., Ray, J. D., Boatman, J. F. and Gunter, R. L. 1987. Hydrogen peroxide in air during winter over the central United States. Geophys. Res. Letts. 14, 1146–1149.
  • Venkatram, A. and Karamchandari, P. 1986. Source-receptor relationships, a look at acid deposition modeling. Environ. Sci. and Technol. 20, 1084–1091.
  • Walcek, C. J. and. Pruppacher, H. R. 1984. On the scavenging of SO2 by cloud and raindrops. I: A theoretical study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem. 1, 269–289.
  • Walcek, C. J., Pruppacher, H. R., Topalian, J. H. and Mitra, S. K. 1984. On the scavenging of SO2 by cloud and raindrops. II: An experimental study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem. 1, 291–306.
  • Weiss, R. E., Larson, T. V. and Waggoner, A. P. 1982. In situ rapid-response measurements of H2SO4/ (NH4)2SO4 aerosols in rural Virginia. Environ. Sci. and Technol. 16, 525–532.
  • Yau, M. K. and Austin, P. M. 1979. A model for hydrometeor growth and evolution of raindrop size spectra in cumulus cells. J. Atmos. Sci. 36,655–668.
  • Young, T. F. and Blatz, L. A. 1949. The variation of the properties of electrolytic solutions with degrees of disassociation. Chem Rev. 44,93–115.