140
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

The atmospheric CH4 increase since the Last Glacial Maximum

, , &
Pages 242-257 | Received 10 Mar 1992, Accepted 02 Nov 1992, Published online: 18 Jan 2017

References

  • Bojkov, R. D. 1986. Surface ozone during the second half of the nineteenth century. J. aim. Appl. Meteor. 25, 343–352.
  • Chameides, W. L., Liu, S.-C. and Cicerone, R. J. 1977. Possible variations in atmospheric methane. J. Geophys. Res. 82, 1795–1798.
  • Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Lorius, C. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 127–131.
  • Chappellaz, J. A., Fung, I. Y. and Thompson, A. M. 1993. The atmospheric CH4 increase since the Last Glacial Maximum. 1. Source estimates. Tellus 45B, 228–241.
  • Cicerone, R. J. and Oremland, R. S. 1988. Biogeo-chemical aspects of atmospheric methane. Global Biogeochem. Cycles 2, 299–327.
  • Craig, H. and Chou, C. 1982. Methane: The record in polar ice cores. Geophys. Res. Lett. 9,1221–1224.
  • Crutzen, P. J. and Zimmermann, P. H. 1991. The changing photochemistry of the troposphere. Tellus 43AB, 153–166
  • Ehhalt, D. H. 1987. How has the Atmospheric Concentration of CH4 Changed? In: The Changing Atmo-sphere: Report of the Dahlem Workshop on the Changing Atmosphere (eds. F. S. Rowland and I. S. A. Isaksen). Berlin, J. Wiley and Sons, New York, 1988, pages 25–32.
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P. and Fraser, P. J. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96, 13033–13065.
  • Guthrie, P. D. 1989. The CH4-CO-OH conundrum: A simple analytic approach. Global Biogeochem. Cycles 3, 287–298.
  • Guthrie, P. D. and Yarwood, G. 1991. Analysis of the Intergovernmental Panel on Climate Change (IPCC) Future Methane Simulations, SYSAPP-91/114 Publication, Systems Applications Intl., San Rafael, CA 94903.
  • Hameed, S., Pinto, J. P. and Stewart, R. W. 1979. Sensitivity of the predicted CO-OH-CH4 perturbation to tropospheric NO, concentration. J. Geophys. Res. 84, 763–768.
  • Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. and Lerner, J. 1984. Climate sensitivity: analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monograph 29, Maurice Ewing Vol. 5, AGU, Washington.
  • Hough, A. M. and Derwent, R. G. 1990. Changes in the global concentration of tropospheric ozone due to human activities. Nature 344, 645–648.
  • Isaksen, I. S. A. 1988. Is the Oxidizing Capacity of the Atmosphere Changing? In: The Changing Atmosphere, (Eds. F. S. Rowland and I. S. A. Isaksen), Wiley-Interscience, New York, pp. 141–157.
  • Isaksen, I. S. A. et al. 1992. Tropospheric Processes: observations and interpretation. In: Scientific assessment of ozone depletion: 1991 (Rep. 25) World Meteor. Org.-United Nations Environmental Programme, Geneva, Switzerland, ch. 5.
  • Jackman, C. H., Seals Jr., R. K. and Prather, M. J. 1989. eds. Two-Dimensional Intercomparison of Stratospheric Models. NASA Conf. PubL 3042. NASA, Washington, DC.
  • Khalil, M. A. K. and Rasmussen, R. A. 1984. Carbon monoxide in the earth's atmosphere. Increasing trend. Science 224, 54–56.
  • Khalil, M. A. K. and Rasmussen, R. A. 1985. Causes of increasing methane: Depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ. 19, 397–407.
  • Khalil, M. A. K. and Rasmussen, R. A. 1990. Atmo-spheric carbon monoxide: Latitudinal distribution of sources. Geophys. Res. Lett. 17, 1913–1916.
  • Law, K. S. and Pyle, J. A. 1991. Modelling the response of tropospheric trace species to changing source gas concentrations. Atmos. Environ. 25A, 1863–1871.
  • Lelieveld, J. and Crutzen, P. J. 1990. Influences of cloud photochemical processes on tropospheric ozone. Nature 343, 227–233.
  • Levine, J. S., Rinsland, C. P. and Tennille, G. M. 1985. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature 318, 254–257.
  • Logan, J. A. 1983. Nitrogen oxides in the troposphere: Global and regional budgets.. 1. Geophys. Res. 88, 10785–10807.
  • Lu, Y. and Khalil, M. A. K. 1991. Tropospheric OH: Model calculations of spatial, temporal and secular variations. Chemosphere 23, 397–444.
  • Lu, Y. and Khalil, M. A. K. 1993. The roles of CO and CH, in OH chemistry. Chemosphere 26, 641–656.
  • McElroy, M. B. 1989. Studies of Polar Ice: Insights for atmospheric chemistry. In: The environmental record in glaciers and ice sheets (eds. H. Oeschger and C. C. Langway), John Wiley and Sons, New York, pp. 363–377.
  • Neftel, A., Jacob, P. and Klockow, D. 1984. Measurements of hydrogen peroxide in polar ice samples, Nature 311, 43–45.
  • Pearman, G. I., Etheridge, D., De Silva, F. and Fraser, P. J. 1986. Evidence of changing concentrations of atmospheric CO2, N20 and CH4 from air bubbles in Antarctic ice. Nature 320, 248–250.
  • Pinto, J. P. and Khalil, M. A. K. 1991. The stability of tropospheric OH during ice ages, interglacial epochs and modern times. Tellus 43B, 136–151.
  • Prather, M. J. ed. 1989. An assessment model for atmospheric composition. NASA Conf. Pub. 3023, 1989.
  • Prinn, R. et al. 1992. Global average concentration and trend for hydroxyl radicals deduced from ALE/ GAGE trichloroethane (methyl chloroform) data for 1978-1990. J. Geophys. Res. 97, 2445–2462.
  • Rasmussen, R. A. and Khalil, M. A. K. 1981. Increase in the concentration of atmospheric methane. Atmos. Environ. 15, 883–886.
  • Rasmussen, R. A. and Khalil, M. A. K. 1984. Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends, and interhemi-spheric gradients. J. Geophys. Res. 89, 11599–11605.
  • Raynaud, D., Chappellaz, J., Barnola, J. M., Korotkevich, Y. S. and Lorius, C. 1988. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature 333,665–667.
  • Rind, D., Suozzo, R., Balachandran, N. K. and Prather, M. J. 1990. Climate changes and the middle atmo-sphere. Part I: The doubled CO2 climate. J. Atmos. Sci. 47, 475–494.
  • Sandroni, S., Anfossi, D. and Viarengo, S. 1992. Surface ozone levels at the end of the nineteenth century in South America. J. Geophys. Res. 97,2535-2540,1992.
  • Seiler, W. and Conrad, R. 1987. Contribution of tropical ecosystems to the global budget of trace gases, espe-cially CH4 , H2 , CO, and N20. In: The geophysiology of Amazonia, (ed. R. E. Dickinson), pp. 133-160, John Wiley, New York.
  • Sigg, A. and Neftel, A. 1991. Evidence for a 50% increase in H202 over the past 200 years from a Greenland ice core. Nature 351, 557–559
  • Staffelbach, T., Neftel, A., Stauffer, B. and Jacob, D. 1991. A record of the atmospheric methane sink from formaldehyde in polar ice cores. Nature 349,603–605.
  • Stauffer, B., Fischer, G., Neftel, A. and Oeschger, H. 1985. Increase of atmospheric methane recorded in Antarctic core. Science 229, 1386–1388
  • Stauffer, B., Lochbronner, E., Oeschger, H. and Schwander, J. 1988. Methane concentration in the glacial atmosphere was only half that of the pre-industrial Holocene. Nature 332, 812–814.
  • Sze, N. D. 1977. Anthropogenic CO emissions: Impli-cations for the CO—OH—CH4 cycle. Science 195, 673–675.
  • Thompson, A. M. 1992. The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science 256, 1157–1168.
  • Thompson, A. M. and Cicerone, R. J. 1982. Wet and dry removal as causes of variability in trace gas composi-tion of the marine troposphere. J. Geophys. Res. 87, 8811–8826.
  • Thompson, A. M. and Cicerone, R. J. 1986. Possible perturbations to tropospheric CO, CH4, and OH. J. Geophys. Res. 91, 10853–10864.
  • Thompson, A. M., Owens, M. A. and Stewart, R. W. 1989a. Sensitivity of tropospheric hydrogen peroxide to global chemical and climate change. Geophys. Res. Lett. 16, 53–56.
  • Thompson, A. M., Stewart, R. W., Owens, M. A. and Herwehe, J. A. 1989b. Sensitivity of tropospheric oxidants to global chemical and climate change. Atmos. Environ. 23, 519–532.
  • Thompson, A. M., Huntley, M. A. and Stewart, R. W. 1990. Perturbations to tropospheric oxidants, 1985-2035: 1. Calculations of ozone and OH in chemi-cally coherent regions. J. Geophys. Res. 95, 9829–9844.
  • Thompson, A. M. and Stewart, R. W. 1991. Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model. J. Geophys. Res. 96, 13089–13108.
  • Vaghjiani, G. L. and Ravishankara, A. R. 1991. New measurement of the rate coefficient for the reaction of OH with CH4. Nature 350, 406–409.
  • Valentin, K. M. 1990. Numerical modeling of the climatol-ogical and anthropogenic influences on the chemical composition of the troposphere since the Last Glacial Maximum. Ph. D. Thesis, Johannes-Gutenburg-Univ. Mainz, FRG.
  • Valentin, K. M. and Crutzen, P. J. 1990. A two-dimen-sional, global photochemical study on the influences of increasing atmospheric chemistry since the Last Glacial Maximum. Abstracts volume, Sixth CACGP Symposium. Chemistry of the Global Atmosphere, Chamrousse.
  • Volz, A. and Kley, D. 1988. Ozone measurements in the 19th century: an evaluation of the Montsouris series, Nature 332, 240–242.