183
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

, , , , , , & show all
Pages 212-231 | Received 03 May 1991, Accepted 18 Aug 1992, Published online: 18 Jan 2017

References

  • Apps, M. J. and Kurz, W. A. 1991. Assessing the role of Canadian forests and forest sector activities in the global carbon balance. World Resource Review 3, 333–344.
  • Apps, M. J., Kurz, W. A., Luxmoore, R. J., Nilsson, L. O., Sedjo, R. A., Schmidt, R., Simpson, L. G. and Vinson, T. S. 1993. Boreal Forests and Tundra. Water, Air and Soil Pollution 70,39–53.
  • Birdsey, R. A., Plantinga, A. J. and Heath, L. S. 1993. Past and prospective carbon storage in United States forests. Forest Ecology and Management 58, 33–44.
  • Birdsey, R. A. 1992. Carbon storage and accumulation in United States forest ecosystems. General Technical Report WO-59, US Department of Agriculture: Forest Service.
  • Burschel, P., Karsten, E. and Larson, B. C. 1993. Die Rolle von Wald und Forstwirtschaft im Kohlen-stoffhaushalt. Forstliche Forschungsberichte München, nr. 126.
  • Cooper, F. C. 1983. Carbon storage in managed forests. Canadian Journal of Forest Research 13, 155–166.
  • Heath, L. S., Kauppi, P. E., Burschel, P., Gregor, H.-D., Guderian, R., Kohlmaier, G. H., Lorenz, S., Overdieck, D., Scholz, F., Thomasius, H. and Weber, M. 1993. Contribution of temperate forests to the world's carbon budget. Water, Air and Soil Pollu-tion 70,55–69.
  • Heath, L. S. and Birdsey, R. A. 1993. Carbon trends of productive temperate forests of the coterminous United States. Water, Air and Soil Pollution 70, 279–293.
  • Houghton, R. A. 1993. Is carbon accumulating in the northern temperate zone? Global Biogeochemical Cycles 7,611–617.
  • Jenny, H. 1980. The soil resource. Ecological Studies 37. Springer, New York.
  • Kauppi, P. E., Mielikainen, K. and Kuusela, K. 1992. Biomass and carbon budget of european forests, 1971 to 1990. Science 256, 70–74.
  • Keeling, C. D. 1973. The carbon dioxide cycle: Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In: Rasool, S. I., (ed.): Chemistry of the lower atmosphere. Plenum Press, New York/London, 251–329.
  • Keeling, C. D., Bacastow, R. B. and Tans, P. P. 1980. Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide. Geophysical Research Letters 7, 505–508.
  • Kimball, B. A. 1983a. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron. J. 75, 779–788.
  • Kimball, B. A. 1983b. Carbon dioxide and agricultural yield: An assemblage and analysis of 770 prior observa-tions. US Water Conservation Laboratory, 71 pp.
  • Kindermann, J., Liideke, M. K. B., Badeck, F.-W., Otto, R. D., Klaudius, A., Hager, Ch., Wiirth, G., Lang, T., Dönges, S., Habermehl, S. and Kohlmaier, G. H. 1993. Structure of a Global and Seasonal Carbon Exchange Model for the Terrestrial Biosphere. The Frankfurt biosphere model (FBM). Water, Air and Soil Pollution 70, 675–684.
  • Kohlmaier, G. H., Bröhl, H., Sire, E. O., Plöchl, M. and Revelle, R. 1987. Modelling stimulation of plants and ecosystem response to present levels of excess atmospheric CO,. Tellus 39B, 155–170
  • Kohlmaier, G. H., Ladeke, M. K. B., Janecek, A., Benderoth, G., Kindermann, J. and Klaudius, A. 1991. Land biota, source or sink of atmospheric CO,: Positive and negative feedbacks within a changing climate and land use development. In: Scientists on GAIA, S. H. Schneider and P. J. Boston (eds.), MIT Press, Cambridge, 223–239.
  • Kolchugina, T. P. and Vinson, T. 1993a. Carbon sources and sinks in forest biomes of the former Soviet Union. Global Biochemical Cycles 7,291–304.
  • Kolchugina, T. P. and Vinson, T. 1993b. Comparison of two methods to assess the carbon budget of the forest biomes in the former Soviet Union. Water, Air and Soil Pollution 70, 207–221.
  • Kurz, W. A., Apps, M. J., Webb, T. M. and McNamee, P.J. 1991. The contribution of biomass burning to the carbon budget of the Canadian forest sector: a concep-tual model. In: Global biomass burning. J. S. Levine (ed.), MIT Press, Cambridge & London: 339–344.
  • Kurz, W. A., Apps, M. J., Webb, T. M. and McNamee, P. J. 1992. The carbon budget of the Canadian forest sector: Phase I. For. Can., Northwest Reg., North. For Cent., Edmonton, Alberta. Inf. Rep. NOR-X-326.
  • Kurz, W. A. and Apps, M. J. 1993. Contribution of Northern Forests to the Global C Cycle: Canada as a Case Study. Water, Air and Soil Pollution 70, 163–176.
  • Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 35, 183–212.
  • Leslie, P. H. 1948. Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245.
  • Lewis, E. G. 1942. On the generation and growth of a population. Sankhya 6, 93–96.
  • Long, S. P. and Drake, B. G. 1992. Photosynthetic CO, assimilation and rising atmospheric CO, concentra-tions. In: Crop photosynthesis: spatial and temporal determinants. N. R. Baker, H. Thomas (eds.), Elsevier: 69–103.
  • Lüdeke, M. K. B., Badeck, F.-W., Otto, R. D., Hager, C., Dönges, S., Kindermann, J., Wiirth, G., Lang, T., Mel, U., Klaudius, A., Ramge, P., Habermehl, S. and Kohlmaier, G. H. 1994a. The Frankfurt Biosphere Model. A global process oriented model for the seasonal and longterm CO, exchange between terrestrial ecosystems and the atmosphere. Climate Research 4, 143–166.
  • Lüdeke, M. K. B., Donges, S., Otto, R. D., Kinder-mann, J., Badeck, F.-W., Ramge, P., Jakel, U. and Kohlmaier, G. H. 1994b. Responses in NPP and carbon stores of the northern biomes to a CO2-induced climatic change, as evaluated by the Frankfurt biosphere model (FBM). Tellus 47B, 191–205
  • Melillo, J. M., Fruci, J. R., Houghton, R. A., Moore, B. III and Skole, D. L. 1988. Land-use change in the Soviet Union between 1850 and 1980: causes of a net release of CO, to the atmosphere. Tellus 40B, 116–128
  • Perlwitz, J. 1992. Preliminary results of a global SST anomaly experiment with a T42 GCM. Annales Geophysicae Assembly of the European Geophysical Society. Edinburgh, Apr. 6-10,1992.
  • Rogers, H. H., Runion, G. and Krupa, S. V. 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 83,155–189.
  • Runkle, J. 1985. Disturbance regimes in temperate forests. In: Pickett, S. T. A. and White, P. S. (eds.): The ecology of natural disturbance and patch dynamics. Academic Press, San Diego.
  • Sampson, R. N. 1992. Forestry opportunities in the United States to mitigate the effects of global warming. Water, Air and Soil Pollution 64, 157–182.
  • Sedjo, R. A. 1992. Temperate forest ecosystems in the global carbon cycle. Ambio 21, 74–277.
  • Smith, T. M. and Shugart, H. H. 1993. The potential response of global terrestrial storage to a climate change. Water, Air and Soil Pollution 70, 629–642.
  • Tadaki, Y., Sato, A., Sakurai, S., Takeuchi, I. and Kawahara, T. 1977. Studies on the production structure of forest. XVIII. Structure and primary production in subalpine “Dead Tree Strips” abies forest near Mt. Asahi. Jap. J. Ecol. 3,83–90.
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.
  • United Nations, 1992. The forest resources of the temperate zones. The UN-ECE/FAO 1990 Forest Resource Assessment, vol. 1. General Forest Resource Information, New York.
  • Usher, M. B. 1966. A matrix approach to the manage-ment of renewable resources, with special reference to selection forests. J. Appl. Ecol. 3,355–367.
  • Usher, M. B. 1972. Developments in the Leslie matrix model. In: N. R Jeffers (ed.): Mathematical models in ecology. Blackwell, Oxford.
  • Williams, M. 1992. Americans and their forests. A histori-cal geography. Cambridge University Press, ch. 14, pp. 466–494.
  • Zeide, B. 1993. Analysis of growth equations. Forest Science 39, 594–616.
  • Ziska, L. H., Chamberlain, S. and Drake, B. G. 1990. Long-term photosynthetic response in single leaves of a C3 and C4 salt marsh species grown in elevated atmospheric CO2 in situ. Oecologia 83,469–472.