1,380
Views
179
CrossRef citations to date
0
Altmetric
Original Articles

The sulfate-CCN-cloud albedo effect

&
Pages 281-300 | Received 09 Jun 1994, Accepted 14 Oct 1994, Published online: 18 Jan 2017

References

  • Ackerman, A. S., Toon, O. B. and Hobbs, P. V. 1994. Reassessing the dependence of cloud condensation nucleus concentration on formation rate. Science 367, 445–447.
  • Albrecht, B. A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230.
  • Albrecht, B. A., Randall, D. A. and Nicholls, S. 1988. Observations of marine stratocumulus clouds during FIRE. Bull. Am. Meteor. Soc. 69, 618–626.
  • Anderson, T. L., Covert, D. S. and Charlson, R. 1994. Cloud droplet number studies with a counterflow virtual impactor. J. Geophys. Res. 99, 8249–8256.
  • Berresheim, H., Eisele, F. L., Tanner, D. J., McInnes, L. M., Ramsey-Bell, D. C. and Covert, D. S. 1993. Atmospheric sulfur chemistry and cloud condensation nuclei (CCN) concentrations over the Northeastern Pacific coast. J. Geophys. Res. 98, 12701–12711.
  • Boucher, O. and Rodhe, H. 1994. The sulfate-CCN-cloud albedo effect: a sensitivity study, Report CM-83, 20 pp. Department of Meteorology, Stockholm University, Sweden.
  • Boucher, O., Le Treut, H. and Baker, M. B. 1994. Sen-sitivity of a GCM to changes in cloud droplet concen-tration. In: Preprints of the AMS 8th Conference on Atmospheric radiation, 558-560. Nashville, Tennessee.
  • Charlson, R. J. 1992. Gas-to-particle conversion and CCN production. In: International Symposium on Dimethylsulphide: oceans, atmosphere and climate, 275-286. G. Restelli and G. Angeletti (eds.), Kluwer Academic Publishers, Boston.
  • Charlson, R. J., Langner, J. and Rodhe, H. 1990. Sulphate aerosol and climate. Nature 348, 22.
  • Charlson, R. J., Langner, J., Rodhe, H., Levoy, C. B. and Warren, S. G. 1991. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43AB, 152-163.
  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E. and Hofmann, D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255, 423–430.
  • Chuang, C. C., Penner, J. E., Taylor, K. E. and Walton, J. J. 1994. Climate effects of anthropogenic sulfate:
  • Clarke, A. D. 1992. Atmospheric nuclei in the remote free-troposphere. J. Atmos. Chem. 14, 479–488.
  • Coakley, J. A., Bernstein, R. L. and Durkee, P. A. 1987. Effect of ship-stack effluents on cloud reflectivity. Science 237, 1020–1022.
  • Falkowski, P. G., Kim, Y., Kolber, Z., Wilson, C., Wirick, C. and Cess, R. 1992. Natural versus anthro-pogenic factors affecting low-level cloud albedo over the North Atlantic. Science 256, 1311–1313.
  • Fouquart, Y. and Bonnel, B. 1980. Computations of solar heating of the Earth's atmosphere: a new parameter-ization. Behr. Phys. Atmos. 53, 35–62.
  • Fouquart, Y. and Isaka, H. 1992. Sulfur emission, CCN, clouds and climate: a review. Ann. Geophysicae 10, 462–471.
  • Gillani, N. V., Daum, P. H., Schwartz, S. E., Leaitch, W. R., Strapp, J. W. and Isaac, G. A. 1992. Fractional activation of accumulation-mode particles in warm continental stratiform clouds. In: Precipitation scavenging and atmosphere-surface exchange, vol. 1, pp. 345–358. S. E. Schwartz and W. G. N. Slinn (eds.). Hemisphere Publishing Corporation.
  • Graßl, H. 1988. What are the radiative and climatic consequences of the changing concentration of atmospheric aerosol particles? In: The changing atmo-sphere, 187-199. F. S. Rowland and I. S. A. Isaksen (eds.). John Wiley & Sons.
  • Hallberg, A. 1994. Aerosol particle properties influencing cloud droplet nucleation, Ph.D. thesis. Paper no. IV. University of Stockholm, Sweden.
  • Hallberg, A., Ogren, J. A., Noone, K. J., Okada, K., Heintzenberg, J. and Svenningsson, I. B. 1995. The influence of aerosol particle composition on cloud droplet formation. J. Atmos. Chem. 19, in press.
  • Han, Q., Rossow, W. B. and Lacis, A. A. 1994. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate 7, 465–497.
  • Hartmann, D. L. 1993. Radiative effects of clouds on Earth's climate. In: Aerosol-cloud-climate interactions, 151-173, vol. 54 of International Geophysical Series, P. V. Hobbs (ed.). Academic Press.
  • Hegg, D. A. 1994. The cloud condensation nucleus-sul-fate mass relationship and cloud albedo. J. Geophys. Res., in press.
  • Hegg, D. A. and Hobbs, P. V. 1988. Comparisons of sulfate and nitrate production in clouds on the Mid-Atlantic and Pacific northwest coasts of the United States. J. Atmos. Chem. 7, 325–333.
  • Hegg, D. A., Hobbs, P. V. and Radke, L. F. 1980. Obser-vations of the modification of cloud condensation nuclei in wave clouds. J. Rech. Atmos. 14, 217–222.
  • Hegg, D. A., Hobbs, P. V. and Radke, L. F. 1984. Measurements of the scavenging of sulfate and nitrate in clouds. Atmos. Env. 18, 1939–1946.
  • Hegg, D. A., Ferek, R. J. and Hobbs, P. V. 1993. Light scattering and cloud condensation nucleus activity of
  • Hobbs, P. V. 1993. Aerosol-cloud interactions. In: Aerosol-cloud-climate interactions, 33-73, vol. 54 of International Geophysical Series, P. V. Hobbs (ed.). Academic Press.
  • Hoppel, W. A., Frick, F. M. and Larson, R. E. 1986. Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer. Geophys. Res. Lett. 13, 125–128.
  • Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., Larson, R. E. and Mack, E. J. 1990. Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. J. Geophys. Res. 95, 3659–3686.
  • IPCC, 1992. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, J. T. Houghton, B. A. Callander and S. K. Varney (eds.). Cambridge University Press, United Kingdom.
  • Jones, A., Roberts, D. L. and Slingo, A. 1994. A climate model study of the indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370, 450–453.
  • Kaufman, Y. J. and Tanr6, D. 1994. Effect of variations in supersaturation on the formation of cloud conden-sation nuclei. Nature 369, 45–48.
  • Kiehl, J. T. and Briegleb, B. P. 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311–314.
  • Kim, Y. and Cess, R. D. 1993. Effect of anthropogenic sulfate aerosols on low-level cloud albedo over oceans. J. Geophys. Res. 98, 14883–14885.
  • King, M. D., Radke, L. F. and Hobbs, P. V. 1993. Optical properties of marine stratocumulus clouds modified by ships. J. Geophys. Res. 98, 2729–2739.
  • Langner, J. and Rodhe, H. 1991. A global three-dimen-sional model of the tropospheric sulfur cycle. J. Atmos. Chem. 13, 225–263.
  • Langner, J., Rodhe, H., Crutzen, P. J. and Zimmermann, P. 1992. Anthropogenic influence of the distribution of tropospheric sulphate aerosol. Nature 359, 712–716.
  • Langner, J., Bates, T., Charlson, R. J., Clarke, A. D., Durkee, P. A., Heintzenberg, J., Hofmann, D. J., Huebert, B., Leck, C., Lelieveld, J., Ogren, J. A., Prospero, J., Quinn, P. K., Rodhe, H. and Ryaboshapko, A. G. 1993. The global atmospheric sulfur cycle: An evaluation of model predictions and observations, Report CM-81, 28 pp. Department of Meteorology, Stockholm University, Sweden.
  • Leaitch, W. R. and Isaac, G. A. 1994. On the relationship between sulfate and cloud droplet number concentra-tions. J. Climate 7, 206–212.
  • Leaitch, W. R., Isaac, G. A., Strapp, J. W., Banic, C. M. and Wiebe, H. A. 1992a. Concentrations of major ions in Eastern North American cloud water and their control of cloud droplet number concentrations. In: Precipitation scavenging and atmosphere-surface exchange, vol. 1, pp. 333-343, S. E. SchWartz and W. G. N. Slinn (eds.). Hemisphere Publishing Corpora-tion.
  • Leaitch, W. R., Isaac, G. A., Strapp, J. W., Banic, C. M. and Wiebe, H. A. 1992b. The relationship between cloud droplet number concentrations and anthro-pogenic pollution: observations and climatic implica-tions. J. Geophys. Res. 97, 2463–2474.
  • Le Trent, H. and Li, Z. X. 1991. Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dynam. 5,175–187.
  • Martin, G. M. and Johnson, D. W. 1992. The measurements and parametrisation of effective radius of droplets in stratocumulus clouds. In: Proceedings of the 1 1 th International Conference on Clouds and precipitation, vol. 1, pp. 158–161. Montréal, Canada.
  • Morcrette, J. J. 1989. Description of the radiative scheme in the ECMWF model. Technical Report no. 165, 26 pp., ECMWF, Reading, United Kingdom.
  • Novakov, T. and Penner, J. E. 1993. Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365, 823–826.
  • Novakov, T., Riviera-Carpio, C., Penner, J. E. and Rogers, C. F. 1994. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentration. Tellus 46B, 132–141.
  • Parungo, F., Boatman, J. F., Sievering, H., Wilkison, S. W. and Hicks, B. B. 1994. Trends in global marine cloudiness and anthropogenic sulfur. J. Climate 7, 434–440.
  • Penner, J. E., Dickinson, R. E. and O'Neill, C. A. 1992. Effects of aerosol from biomass burning on the global radiation budget. Science 256, 1432–1434.
  • Penner, J. E., Charlson, R. J., Hales, J. M., Laulainen, N. S., Leifer, R., Novakov, T., Ogren, J., Radke, L. F., Schwartz, S. E. and Travis, L. 1994. Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bull. Am. Met. Soc. 75, 375–400.
  • Platnick, S. and Twomey, S. 1994. Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer. J. App!. Meteor. 33, 334–347.
  • Quinn, P. K., Covert, D. S., Bates, T. S., Kapustin, V. N., Ramsey-Bell, D. C. and McInnes, L. M. 1993. Dimethylsulfide/cloud condensation nuclei/climate system: relevant size-resolved measurements of the chemical and physical properties of the atmospheric aerosol particles. J. Geophys. Res. 98, 10411–10427.
  • Radke, L. F., Coakley, J. A. and King, M. D. 1989. Direct and remote sensing observations of the effects of ships on clouds. Science 246, 1146–1148.
  • Rockel, B., Raschkle, E. and Weyers, B. 1991. A parameterization of broad band radiative transfer properties of water, ice and mixed clouds. Beitr. Phys. Atmos. 64, 1–12.
  • Roeckner, E., Rieland, M. and Keup, E. 1991. Modelling of clouds and radiation in the ECHAM model. ECMWFIWCRP Workshop on Clouds, radiative trans-fer and the hydrological cycle, 199-222. ECMWF, Reading, United Kingdom.
  • Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dilmenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S. and Windelband, M. 1992. Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Report no. 93, 172 pp. Max-Planck-Institut fiir Meteorologie, Germany.
  • Sadoumy, R. and Laval, K. 1984. January and July performance of the LMD general circulation model. In: New perspectives in climate modelling, A. Berger and C. Nicolis (eds.). Elsevier, Amsterdam.
  • Schlesinger, M. E., Jiang, X. and Charlson, R. J. 1992. Implication of anthropogenic atmospheric sulphate for the sensitivity of the climate system. In: Climate change and energy policy, 75-108, L. Rosen and R. Glasser (eds.). American Institute of Physics, New York.
  • Schwartz, S. E. 1988. Are global cloud albedo and climate controlled by marine phytoplankton? Nature 336, 441–445.
  • Sievering, H., Van Valin, C. C., Barrett, E. W. and Pueschel, R. F. 1984. Cloud scavenging of aerosol sulfur. Two case studies. Atmos. Env. 18, 2685–2690.
  • Smith, R. N. B. 1990. A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. R. Meteor. Soc. 116, 435–460.
  • Sundqvist, H. 1978. A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. R. Meteor. Soc. 104, 677–690.
  • Sundqvist, H., Berge, E. and Kristjánsson, J. E. 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Wea. Rev. 117, 1641–1657.
  • Taylor, J. P. and Mc Haffie, A. 1994. Measurements of cloud susceptibility. J. Atmos. Sci. 51, 1298–1306.
  • Taylor, K. E. and Penner, J. E. 1994. Response of the climate system to atmospheric aerosols and green-house gases. Nature 369, 734–737.
  • ten Brink, H. M., Schwartz, S. E. and Daum, P. H. 1987. Efficient scavenging of aerosol sulfate by liquid-water clouds. Atmos. Env. 21, 2035–2052.
  • Twomey, S. 1959. The nuclei of natural cloud formation, Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl. 43, 243–249.
  • Twomey, S. 1974. Pollution and the planetary albedo. Atmos. Env. 8, 1251–1256.
  • Twomey, S. A., Piepgrass, M. and Wolfe, T. 1984. An assessment of the impact of pollution on global cloud albedo. Tellus 36B, 356–366.
  • Wigley, T. M. L. 1989. Possible climate change due to S02-derived cloud condensation nuclei. Nature 339, 365–367.
  • Xu, K. M. and Krueger, S. K. 1991. Evaluation of cloudiness parameterizations using a cumulus ensemble model. Month. Wea. Rev. 119, 342–367.
  • Zimmermann, P. H. 1984. Ein dreidimensionales numerisches Transportmodell fiir atmosphiirische Spiiren-stoffe. Ph.D. thesis, 160 pp., University of Mainz, Germany.
  • Zimmermann, P. H. 1987. MOGUNTIA: A handy global tracer model. In: Proceedings of the 16th NATOICCMS International Technical Meeting on Air pollution modeling and its application, 593-608. D. Reidel, Dordrecht, Lindau, Germany.