175
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

In search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO2

, , &
Pages 501-519 | Received 20 Jun 1994, Accepted 06 Mar 1995, Published online: 18 Jan 2017

References

  • Allen, L. H., Jr., Boote, K. J., Jones, J. W., Jones, P. H., Valle, R. R., Acock, B., Rogers, H. H. and Dahlman, R. C. 1987. Response of vegetation to rising carbon dioxide: photosynthesis, biomass, and seed yield of soybean. Global Biogeochem. Cycles I, 1–14.
  • Bacastow, R. B. and Keeling, C. D. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. (II). Changes from A.D. 1700 to 2070 as deduced from a geochemical model. In: Carbon and the biosphere (eds. G. Woodwell and E. V. Pecan), CONF-720510, Washington, DC: USAEC, 86–134.
  • Collatz, G. J., Ribas-Carbo, M. and Berry, J. W. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. of Plant Physiol. 19, 519–538.
  • Comins, H. N. and McMurtrie, R. E. 1993. Long-term response of nutrient-limited forests to CO, enrich-ment: equilibrium behavior of plant-soil models. Ecol. Appl. 3, 666–681.
  • Cure, J. D. and Acock, B. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agric. For. Meteorol. 38, 127–145.
  • Dai, A. and Fung, I. Y. 1993. Can climate variability con-tribute to the “missing” CO, sink? Global Biogeochem. Cycles 7, 599–609.
  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. and Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190.
  • Emanuel, W. R. 1995. Modeling carbon cycling on disturbed landscapes. Ecol. Modelling, in press.
  • Emanuel, W. R., Killough, G. G., Post, W. M. and Shugart, H. H. 1984. Modeling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land-use change. Ecology 65, 970–983.
  • Emanuel, W. R., Shugart, H. H. and Stevenson, M. P. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Change 7, 29–43.
  • Emanuel, W. R., King, A. W. and Post, W. M. 1993. A dynamic model of terrestrial carbon cycling. In: The global carbon cycle (ed. M. Heimann). Berlin: Springer-Verlag, Berlin, 239–260.
  • Enting, I. G. and Mansbridge, J. V. 1987. The incom-patibility of ice-core CO, data with reconstructions of biotic CO, sources. Tellus 39B, 318–325.
  • Esser, G. 1987. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus 39B, 245–260.
  • Farquhar, G. D. and Von Caemmerer, S. 1982. Modelling of photosynthetic response to environmental conditions. In: Physiological plant ecology (II). Water relations and carbon assimilation (eds. O. L. Lange, P. S. Nobel, C. O. L. Lange, H. Ziegler). Berlin: Springer-Verlag. Encycl. Plant Physiol. New Series Vol. 12B, 549–588.
  • Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. and Stauffer, B. 1986. Ice core record of the 13C/12C ratio of atmospheric CO, in the past two centuries. Nature 324, 237–238.
  • Gates, D. M. 1985. Global biospheric response to increasing atmospheric carbon dioxide concentration. In: Direct effects of increasing carbon dioxide on vegetation DOE/ER-0238 (eds. B. R. Strain and J. D. Cure). Washington, DC: Carbon Dioxide Research Division, US Department of Energy, 171–184.
  • Gifford, R. M. 1980. Carbon storage by the biosphere. In: Carbon dioxide and the climate (ed. G. I. Pearman). Canberra: Australian Academy of Science, 167–181.
  • Goudriaan, J. and Ketner, P. 1984. A simulation study for the global carbon cycle, including man's impact on the biosphere. Clim. Change 6, 167–192.
  • Harvey, L. D. D. 1989. Managing atmospheric CO2. Clim. Change 15, 339–341.
  • Houghton, J. T., Jenkins, G. J. and Ephraums, J. J. 1990. Climate change: the IPCC assessment. Cambridge, UK: Cambridge University Press.
  • Houghton, J. T., Callander, B. A. and Varney, S. K. 1992. Climate change 1992: the supplementary report to the IPCC scientific assessment. Cambridge, UK: Cambridge University Press.
  • Houghton, R. A. 1991a. Biomass burning from the perspective of the global carbon cycle. In: Global biomass burning: atmospheric, climatic, and biospheric implications (ed. J. S. Levine), Cambridge, MA: MIT Press, 321–325.
  • Houghton, R. A. 1991b. Tropical deforestation and atmospheric carbon dioxide. Clim. Change 19, 99–118.
  • Houghton, R. A. 1993. Is carbon accumulating in the northern temperate zone? Global Biogeochem. Cycles 7,611–617.
  • Houghton, R. A. and Skole, D. L. 1990. Carbon. In: The earth as transformed by human action (eds. B. L. Turner II, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews, and W. B. Meyer). Cambridge, UK: Cambridge University Press, 393–408.
  • Houghton, R. A. and Woodwell, G. M. 1989. Globalclimatic change. Scientific American 260, 36–44.
  • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R. and Woodwell, G. M. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. EcoL Monogr. 53,235–262.
  • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L. and Meyers, N. 1987. The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux. Tellus 39B, 122–139.
  • Hudson, R. J. M., Gherini, S. A. and Goldstein, R. A. 1994. Modeling the global carbon cycle: Nitrogen fer-tilization of the terrestrial biosphere and the “missing” CO2 sink. Global Biogeochemical Cycles 8,307-333.IPCC, 1993. Data set distributed by Working Group I of the Intergovermental Panel on Climate Change (through anonymous ftp at dar.csiro.au; subdirectory IPCC) and attributed to R. A. Houghton.
  • Keeling, C. D. 1973. The carbon dioxide cycle: reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In: Chemistry of the lower atmosphere (ed. S. I. Rasool). New York: Plenum Press, Inc, 251–329.
  • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G. and Roeloffzen, H. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds(1). Analysis of observational data. In: Aspects of climate variability in the Pacific and the Western Americas. Geophysical Monograph 55 (ed. D. H. Peterson), Washington, DC: American Geophysical Union, 165–236.
  • King, A. W., Emanuel, W. R. and Post, W. M. 1991. The response of atmospheric CO2 to changes in land use. In: Global biomass burning (ed. J. S. Levine). Cambridge, MA: MIT Press, 326–338.
  • King, A. W., Emanuel, W. R. and Post, W. M. 1992. Projecting future concentrations of atmospheric CO2 with global carbon cycle models: the importance of simulating historical changes. Environmental Manage-ment 16,91–108.
  • King, A. W., Emanuel, W. R. and Post, W. M. 1994. A dynamic model of terrestrial carbon cycling response to land-use change. In: Carbon balance of world's forested ecosystems: towards a global assess-ment (ed. M. Kanninen). Publications of the Academy of Finland 3/93, Helsinki: Painatuskeskus Oy.
  • Kohlmaier, G. H., Kratz, G., Bröhl, H. and Sire, E. O. 1981. The source-sink function of the terrestrial biota within the global carbon cycle. In: Energy and ecologi-cal modelling (eds. W. J. Mitsch, R. W. Bosserman, and J. M. Klopatek). Amsterdam: Elsevier Sci. Publ. Co., 57–68.
  • Kohlmaier, G. H., Bröhl, H., Sire, E. O. and Plöchl, M. 1987. Modelling stimulation of plants and ecosystem response to present levels of excess atmospheric CO2. Tellus 39B, 155–170.
  • Kohlmaier, G. H., Janecek, A. and Plochl, M. 1988.
  • Modelling response of vegetation to both excess CO2 and airborne nitrogen compounds within a global carbon cycle model. In: Advances in environmental modelling (ed. A. Marani). Amsterdam: Elsevier Sci. Publ. Co., 207–234.
  • Marland, G., Boden, T. A., Griffin, R. C., Huang, S. F., Kanciruk, P. and Nelson, T. R. 1989. Estimates of CO emissions from fossil fuel burning and cement manufac-turing using the United Nations energy statistics and the US Bureau of Mines cement manufacturing data. ORNL/CDIAC-25. NDP-030. Oak Ridge, TN: Oak Ridge National Laboratory.
  • Matthews, E. 1983. Global vegetation and land use: New high resolution data bases for climate studies. J. Climate and Applied Meterology 22,474–487.
  • McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moore, III, B. and Vorosmarty, C. J. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochemical Cycles 6, 101–124.
  • McMurtrie, R. E., Comins, H. N., Kirschbaum, M. U. F. and Wang, Y. P. 1992. Modifying existing forest growth models to take account of effects of elevated CO2. Aust. J. Bot. 40,657–677.
  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, III, B., Vorosmarty, C. J. and Schloss, A. L. 1993. Global climate change and terrestrial net primary production. Nature 363, 234–240.
  • Ojima, D. S., Parton, W. J., Schimel, D. S., Scurlock, J. M. O. and Kittel, T. G. F. 1993. Modeling the effects of climatic and CO2 changes on grassland storage of soil C. Water, Air, and Soil Pollution 70,643–657.
  • Peterson, B. J. and Melillo, J. M. 1985. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B, 117–127.
  • Polglase, P. J. and Wang, Y. P. 1992. Potential CO2-enhanced carbon storage by the terrestrial biosphere. Aust. J. of Bot. 40,641–656.
  • Rastetter, E. B., Ryan, M. G., Shaver, G. S., Melillo, J. M., Nadelhoffer, K. J., Hobbie, J. E. and Aber, J. D. 1991. A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposi-tion. Tree Physiology 9,101–126.
  • Rotmans, J. and den Elzen, M. G. J. 1993. Modelling feedback mechanisms in the carbon cycle: balancing the carbon budget. Tellus 45B, 301–320.
  • Rotmans, J. and Swart, R. J. 1991. Modelling tropical deforestation and its consequences for global climate. Ecol. Modell. 58,217–247.
  • Sarmiento, J. L., Orr, J. C. and Siegenthaler, U. 1992. A perturbation simulation of CO2 uptake in an ocean circulation model. J. Geophys. Res. 97,3621–3645.
  • Schlesinger, W. H. 1977. Carbon balance in terrestrial detritus. Ann. Rev. EcoL Syst. 8,51–81.
  • Schimel, D. S., Parton, W. J., ICittel, T. G. F., Ojima, D. S. and Cole, C. V. 1990. Grassland biogeo-chemistry: links to atmospheric processes. Climatic Change 17,13–25.
  • Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, Ojima, D. S., Painter, T. H., Parton, W. J. and Townsend, A. R. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles 8, 279–293
  • Schindler, D. W. and Bayley, S. E. 1993. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Global Biogeo-chemical Cycles 7,717–733.
  • Shugart, H. H. 1984. A theory of forest dynamics. The ecological implications of forest succession models. New York: Springer-Verlag.
  • Siegenthaler, U. and Oeschger, H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice-core CO2 data. Tellus 39B, 140–154.
  • Vloedbeld, M. and Leemans, R. 1993. Quantifying feed-back processes in the response of the terrestrial carbon cycle to global change: the modeling approach of IMAGE-2. Water, Air, and Soil Pollution 70, 615–628.
  • Watson, R. T., Rodhe, H., Oeschger, H. and Siegen-thaler, U. 1990. Greenhouse gases and aerosols. In: Climate change. The IPCC scientific assessment (eds. J. T. Houghton, G. J. Jenkins, and J. J. Cambridge, UK: Cambridge University Press, 1–40.
  • Whittaker, R. H. and Likens, G. E. 1973. Carbon in the biota. In: Carbon and the biosphere, CONF-720510 (eds. G. M. Woodwell and E. V. Pecan). Washington, DC: US Department of Energy, 281–302.
  • Wigley, T. M. L. 1991. A simple inverse carbon cycle model. Global Biogeochem. Cycles 5, 373–382.
  • Wullschleger, S. D. 1993. Biochemical limitations to carbon assimilation in C3 plants, a retrospective analysis of the A/C; curves from 109 species. J. Experimental Botany 44, 907–920.
  • Wullschleger, S. D., Post, W. M. and King, A. W. 1995. On the potential for a CO2 fertilization effect in forests: estimates of the biotic growth factor based on 58 controlled-exposure studies. In: Biotic feedbacks in the global climatic system (ed. G. M. Woodwell and F. T. Mackenzie). New York: Oxford University Press, 85–107.