195
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics of methane emission from different vegetations on a wetland

&
Pages 382-392 | Received 24 Jul 1996, Accepted 17 Feb 1997, Published online: 18 Jan 2017

References

  • Burke, R. A., Barber, T. R. and Sackett, W. M. 1992. Seasonal variations of stable hydrogen and carbon isotope ratios of methane in subtropical freshwater sediments. Global Biogeochem. Cycles 6, 125–138.
  • Chappellaz, J. A., Fung, I. Y. and Thompson, A. M. 1993. The atmospheric CH4 increase since the last glacial maximum. (1) Source estimate. Tellus 45B, 228–241.
  • Christensen, T. R. and Cox, P. 1995. Response of methane emission from arctic tundra to climatic change: results from a model simulation. Tellus 47B, 301–309.
  • Cicerone, R. J. and Oremland, R. S. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeo-chem. Cycles 2, 299–327.
  • Clymo, R. S. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Ann. Bot. 27, 309–324.
  • Coleman, D. D., Risatti, J. B. and Schoell, M. 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim. Cosmochim. Acta 45, 1033–1037.
  • Dise, N. B. 1993. Methane emission from Minnesota peatlands: spacial and seasonal variability. Global Biogeochem. Cycles 7, 123–142.
  • Fechner, E. J. and Hemond, H. F. 1992. Methane transport and oxidation in the unsaturated zone of a sphag-num peatlands. Global Biogeochem. Cycles 6, 33–44.
  • Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R. and Russell, G. 1988. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res. D8, 9341–9364.
  • Haraguchi, A. 1991. Effects of water-table oscillation on redox property of peat in a floating mat. J. Ecol. 79, 1113–1121.
  • Haraguchi, A. and Matsui, K. 1990. Nutrient dynamics in a floating mat and pond system with special refer-ence to its vegetation. Ecol. Res. 5, 63–79.
  • Harriss, R., Barlett, K., Frolking, S. and Crill, P. (1993). Methane emission from northern high-latitude wet-lands. In: Biogeochemistry of global change: radiatively active trace gases (ed. R. S. Oremland). Chapman & Hall, New York, 449–486.
  • Hewett, D. G. 1964. Menyanthes trifoliata L. J. Ecol. 52, 723–735.
  • IPCC 1992. Climate change: the supplementary report to the IPCC scientific assessment (eds J. T. Houghton, B. A. Callander and S. K. Varney). Cambridge University Press, Cambridge, UK, 1–200.
  • IPCC 1994. Climate change: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios (eds. J. T. Houghton, J. G. M. Filho, J. B. Hoesung, B. A. Callander, E. Haites, N. Harris and K. Maskell). Cambridge University Press, Cambridge, UK, 1–339.
  • Karunen, P. and Ekman, R. 1982. Age-dependent content of polymerized lipids in sphagnum fuscum. J. Ecol. 54, 162–166.
  • Koerselman, W., Bakker, S. A. and Blom, M. 1990. Nitrogen, phosphorous and potassium budgets for two small fens surrounded by heavily fertilized pastures. J. Ecol. 78, 428–442.
  • Mah, R. A., Ward, D. M., Baresi, L. and Glass, T. L. 1977. Biogenesis of methane. Ann. Rev. Microbiol. 31, 309–341.
  • Malmer, N., Svensson, B. M. and Wallen, B. 1994. Folia Geobot. Phytotaxon. 29, 483–496.
  • Mitsch, W. J. and Gosselink, J. G. 1993. Wetlands. Van Nostrand Reinhold, New York, 1–722.
  • Roulet, N., Moore, T., Bubier, J. and Lafleur, P. 1992. Northern fens: methane flux and climate change. Tellus 44B, 100–105.
  • Rudolph, H. and Samland, J. 1985. Occurrence and metabolism of sphagnum acid in the cell walls of bryo-phytes. Phytochem. 24, 745–749.
  • Sebacher, D. I., Harriss, R. C., Bartlett, K. B., Sebacher, S. M. and Grice, S. S. 1986. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus 38B, 1–10.
  • Shimizu, Y. 1986. Species number area, and habitat diversity on the habitat-islands of Mizorogaike pond, Japan, Ecol. Res. 1, 185–194.
  • Sugimoto, A., Hong, X. and Wada, E. 1991. Rapid and simple measurement of carbon isotope ratio of bubble methane using GC/C/IRMS. Mass Spectroscopy 39, 261–266.
  • Sugimoto, A. and Wada, E. 1993. Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and CO2/F12. Geochim. Cosmochim. Acta 57, 4015–4027.
  • Sugimoto, A. and Wada, E. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation. Geochim. Cosmochim. Acta 59, 1329–1337.
  • Sugimoto, A. 1996. GC/GC/C/IRMS system for carbon isotope measurement of low level methane concentration. Geochem. J. 30, 195–200.
  • Van Breemen, N. 1995. How sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275.
  • Wassmann, R., Thein, U. G., Whiticar, M. J., Rennen-berg, H., Seiler, W. and Junk, W. J. 1992. Methane emissions from the Amazon floodplain: characteriza-tion of production and transport. Global Biogeochem. Cycles 6, 3–13.
  • Whalen, S. C., Reeburgh, W. S. and Kizer, K. S. 1991. Methane consumption and emission by taiga. Global Biogeochem. Cycles 5, 261–273.
  • Whalen, S. C. and Reeburgh, W. S. 1992. Interannual variations in tundra methane emission: A 4-year time series at fixed sites. Global Biogeochem. Cycles 6, 139–159.
  • Whiticar, M. J., Faber, E. and Schoell, M. 1986. Biogenic methane formation in marine and freshwater environ-ments: CO2 reduction versus acetate fermentation — isotope evidence. Geochim. Cosmochim. Acta 50, 693–709.
  • Whiting, G. J. and Chanton, J. P. 1993. Primary production control of methane emission from wetlands. Nature 364, 794–795.
  • Wilson, J. O., Crill, P. M., Bartlett, K. B., Sebacher, D. I., Harriss, R. C. and Sass, R. L. 1989. Seasonal variation of methane emissions from a temperate swamp. Bioge-ochem. 8, 55-71.
  • Yavitt, J. B., Lang, G. E. and Sexstone, A. J. 1990. Methane fluxes in wetland and forest soils, beaver ponds and low-order streams of a temperate forest ecosystem. J. Geophys. Res. D13, 22463–22474.