242
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies. Development and sensitivities

, &
Pages 290-316 | Received 02 May 1997, Accepted 21 Jan 1998, Published online: 15 Dec 2016

  • Amon, R. M. W. and Benner, R. 1994. Rapid recycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369, 549–552.
  • Anderson, L. A. and Sarmiento, J. L. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global. Biogeochem. Cycles 8, 65–80.
  • Anderson, L. A. and Sarmiento, J. L. 1995. Global ocean phosphate and oxygen simulations. Global. Biogeo-chem. Cycles 9, 621–636.
  • Archer, D. and Maier-Reimer, E. 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263.
  • Bacastow, B. and Maier-Reimer, E. 1991. Dissolved organic carbon in modeling oceanic new production. Global Biogeochem. Cycles 5, 71–85.
  • Barnola, J.-M., Raynaud, D., Korotkevich Y. S. and Lorius, C. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408–414.
  • Bauer, J. E., Williams P. M. and Druffel, E. R. M. 1992. 1-4C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357, 667–670.
  • Bishop, J. K. B. 1989. Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. In: Productivity of the Ocean: present and past, edited by Berger, W. H. Smetacek V. S. and Wefer. G. New York. pp. 117–137. John Wiley.
  • Boyle, E. A. 1988. The role of vertical chemical fractiona-tion in controlling late Quarternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714.
  • Boyle, E. A. and Keigwin, L. D. 1987. North atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40.
  • Brewer, P. G. and Glover, D. M. 1987. Ocean chemical fluxes 1983-1986. Rev. Geophys. 25, 1376–1386.
  • Broecker, W. S. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151–197.
  • Broecker, W. A., and Denton, G. H. 1989. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501.
  • Broecker, W. S., Ledwell, J. R., Takahashi, T., Weiss, R., Merlivat, L., Memery, L., Peng, T.-H., Jähne, B. and Mfinnich, K. O. 1986. Isotopic versus micrometeoro-logic ocean CO2 fluxes: a serious conflict. J. Geophys. Res. 91, 10517–10527.
  • Broecker, W. A. and Maier-Reimer, E. 1992. The influ-ence of air and sea exchange on the carbon isotope distribution in the sea. Global Biogeochem. Cycles 6, 315–320.
  • Broecker, W. S. and Peng, T.-H. 1974. Gas exchange rates between air and sea. Tellus 26B, 21–35.
  • Broecker, W. S. and Peng. T.-H. 1982. Tracers in the sea. Eldigio Press. Lamont-Doherty Geological Observat-ory, Palisades, NY.
  • Broecker, W. S. and Peng, T.-H. 1986. Glacial to intergla-cial changes in the operation of the global carbon cycle. Radiocarbon 28, 309–327.
  • Broecker, W. S. and Peng, T.-H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Global Biogeochem. Cycles 1, 15–29.
  • Broecker, W. S., Peteet, D. and Rind, D. 1985a. Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–25.
  • Broecker, W. S., Peng, T.-H., Ostlund, G. and Stuiver, M. 1985b. The distribution of bomb radiocarbon in the ocean. J. Geophys. Res. 90, 6953–6970.
  • Broecker, W. S., Takahashi, T. and Takahashi, T. 1985c. Source and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. J. Geophys. Res. 90, 6925–6939.
  • Bryan, K. and Lewis, L. J. 1979. A water mass model of the world ocean. J. Geophys. Res. 84, 2503–2517.
  • Campbell, J. W. and Aarup, T. 1992. New production in the North Atlantic derived from seasonal patterns of surface chlorophyll. Deep-Sea Res. 39, 1669–1694.
  • Carlson, C. A., Ducklow, H. W. and Michaels, A. F. 1994. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371, 405–408.
  • Codispoti, L. A. 1989. Phosphorus vs. nitrogen limitation of new and export production. In: Productivity of the Ocean: present and past, edited by Berger, W. H. Smetacek, V. S. and Wefer G. pp. 377–394. John Wiley & Sons. New York.
  • Conkright, M. E., Levitus, S. and Boyer, T. P. 1994. World ocean atlas 1994, vol. 1: Nutrients. Washington, D.C.: U.S. Department of Commerce, NOAA, NESDIS.
  • Copin-Montégut, G. and Avril, B. 1993. Vertical distribu-tion and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res. 40, 1963–1972.
  • Cortijo, E., Yiou, P., Labeyrie, L. and Cremer, M. 1995. Sedimentary record of rapid climatic variability in the North Atlantic during the last glacial cycle. Paleocean-ography 10, 911–926.
  • Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149.
  • Drange, H. 1994. An isopycnic coordinate carbon cycle model for the North Atlantic; and the possibility of disposing of fossil fuel CO, in the ocean. PhD thesis. Department of Mathematics, University of Bergen, Norway.
  • Ducklow, H. W. 1995. Ocean biogeochemical fluxes: New production and export of organic matter from the upper ocean. Rev. Geophys. (suppl.) 1271–1276.
  • Ducklow, H. W., Carlson, C. A., Bates, N. R., Knap, A. H. and Michaels, A. F. 1995. Dissolved organic carbon as a component of the biological pump in the North Atlantic ocean. Philos. Trans. R. Soc. (Lond.) B348, 161–167.
  • Dugdale, R. and Goering, J. J. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–206.
  • Enting, I. G., Wigley, T. M. L. and Heimann. M. 1994. Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses. CSIRO Division of Atmospheric Research Technical Paper No. 31. National Library of Australia Cataloguing-in-Publication Entry.
  • Falkowski, P. G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275.
  • Farrell, J. W. and Prell, W. L. 1989. Climatic change and CaCO3 preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4, 447–466.
  • Francey, R. J., Tans, P. P., Allison, C. E., Enting, I. G., White, J. W. C. and Trolier, M. 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373, 326–330.
  • Freeman, K. H. and Hayes, J. M. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles 6, 185–198.
  • Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. and Stauffer, B. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238.
  • Gargett, A. E. and Holloway, G. 1984. Dissipation and diffusion by internal wave breaking. J. Mar. Res. 42, 15–27.
  • GEOSECS, 1987. GEOSECS. Atlantic, Pacific, and Indian ocean expeditions, vol. 7: Shoredbased data and graphics. International Decade of Ocean Exploration. National Science Foundation.
  • Goericke, R. and Fry, B. 1994. Variations of marine plankton S“C with latitude, temperature, and dis-solved CO2 in the world ocean. Global Biogeochem. Cycles 8, 85–90.
  • Gordon, A. L. 1986. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046.
  • Gregg, M. G. 1987. Diapycnal mixing in the thermocline: A review. J. Geophys. Res. 92, 5249–5286.
  • Gruber, N. and Sarmiento, J. L. 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11, 235–266.
  • Guo, L., Santschi, P. H. and Warnken, K. W. 1995. Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr. 40, 1392–1403.
  • Han, Y. J. and Lee, S. W. 1983. An analysis of monthly mean windstress over the global ocean. Mon. Weather Rev. 111, 1554–1566.
  • Hecky, R. E. and Kilham, P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environ-ments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33, 796–822.
  • Heinze, C. 1990. Zur Erniedrigung des Atmosphdrischen Kohlendioxigehalts durch den Weltozean während der letzten Eiszeit. Max-Planck-Inst. ffir Meteorol., Ham-burg, Germany. Tech. Rep. 3. pp. 1–180.
  • Honjo, S. 1990. Particle fluxes and modern sedimentation in the polar oceans. In: Polar oceanography, Part B: Chemistry, biology and geology, pp. 687–739. Academic Press.
  • Keigwin, L. D., Jones, G. A. and Lehman, S. J. 1991. Deglacial meltwater discharge, North Atlantic deep circulation and abrupt climate change. J. Geophys. Res. 96, 16,811–16,826.
  • Keir, R. S. 1988. On the Late Pleistocene ocean geo-chemistry and circulation. Paleoceanography 3, 413–445.
  • Keir, R. S. 1990. Reconstructing the ocean carbon system variation during the last 150,000 years according to the Antarctic nutrient hypothesis. Paleoceanography 5, 253–276.
  • Kirchman, D. L., Lancelot, C., Fasham, M. J. R., Legendre, L., Radach, G. and Scott, M. 1993. Dissolved organic matter in biogeochemical models of the ocean. In: Towards a model of ocean biogeochemical processes, edited by Evans G. T. and Fasham M. J. R. Volume 110 of NATO ASI. pp. 209-225. Springer-Verlag.
  • Kroopnick, P. M. 1985. The distribution of “C of TCO2 in the world oceans. Deep-Sea Research 32, 57–84.
  • Ledwell, J. R., Watson, A. J. and Law, C. S. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364, 701–703.
  • Lehman, S. J., Wright, D. G. and Stocker, T. F. 1993. Transport of freshwater into the deep ocean by the conveyor. In: Ice in the climate system, edited by W. R. Peltier. NATO ASI Ser. I, 12. pp. 187–209.
  • Leuenberger, M., Siegenthaler, U. and Langway, C. C. 1992. Carbon isotope composition of atmospheric CO2 from an antarctic ice core. Nature 357, 488–490.
  • Levitus, S. and Boyer, T. P. 1994a. World ocean atlas 1994, vol. 4: Temperature. Washington, DE.: U.S. Department of Commerce, NOAA, NESDIS.
  • Levitus, S. and Boyer, T. P. 1994b. World ocean atlas 1994, vol. 2: Oxygen. Washington, D.C.: U.S. Department of Commerce, NOAA, NESDIS.
  • Levitus, S., Burgett, R. and Boyer, T. P. 1994. World ocean atlas 1994, vol. 4: Salinity. Washington, D.C.: U.S. Department of Commerce, NOAA, NESDIS.
  • Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S. and Fairbanks, R. G. 1995. The influence of air-sea inter-action on the isotopic composition of organic carbon: observations and modeling. Global Biogeochem. Cycles 9, 653–665.
  • Machta, L. and Hughes, E. 1970. Atmospheric oxygen in 1976 and 1970. Science 168, 1582–1584.
  • Maier-Reimer, E. 1993. Geochemical cycles in an ocean general circulation model. Preindustrial tracer distri-butions. Global Biogeochem. Cycles 7, 645–677.
  • Marchal, O., Stocker, T. F. and Joos, F. 1998. Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content. Paleoceanogra-phy, in press.
  • Martin, J. H. and Fitzwater, S. E. 1992. Dissolved organic carbon in the Atlantic, Southern and Pacific oceans. Nature 356, 699–700.
  • Martin, J. H., Knauer, G. A., Karl, D. M. and Broenkow, W. W. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285.
  • Martin, J. H., Fitzwater, S. E., Michael Gordon, R., Hunter, C. N. and Tanner, S. J. 1993. Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. 40, 115–134.
  • Maslin, M. A., Shackleton, N. J. and Pflaumann, U. 1995. Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and cli-matic rebounds. Paleoceanography 10, 527–544.
  • Matear, R. J. and Holloway, G. 1995. Modeling the inorganic phosphorus cycle of the North Pacific using an adjoint data assimilation model to assess the role of dissolved organic phosphorus. Global Biogeochem. Cycles 9, 101–119.
  • Millero, F. J. 1979. The thermodynamics of the carbonate system in seawater. Geochim. Cosmochim. Acta 43, 1651–1661.
  • Millero, F. J. 1995. Thermodynamics of the carbon diox-ide system in the oceans. Geochim. Cosmochim. Acta 59, 661–677.
  • Milliman, J. D. 1993. Production and accumulation of calcium carbonate in the ocean: budget of a non-steady state. Global. Biogeochem. Cycles 7, 927–957.
  • Mook, W. G. 1986. “C in atmospheric CO2. Netherlands J. Sea. Res. 20, 211–223.
  • Murray, J. W., Barber, R. T., Roman, M. R., Bacon, M. P. and Feely, R. A. 1994. Physical and biological con-trols on carbon cycling in the Equatorial Pacific. Sci-ence 266, 58–65.
  • Najjar, R. G., Sarmiento, J. L. and Toggweiler, J. R. 1992. Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model. Global Biogeochem. Cycles 6, 45–76.
  • Najjar, R. G. and Toggweiler, J. R. 1993. Reply to the comment by Jackson. Limnol. Oceanogr. 38, 1331–1332.
  • Nalewajko, C. and Lean, D. R. S. 1980. Phosphorus. In: The physiological ecology of phytoplankton, edited by Morris. I. pp. 235–258. University of California Press.
  • Neftel, A., Oeschger, H., Staffelback, T. and Stauffer, B. 1988. CO2 record in the Byrd ice core 50,000-5,000 years BP. Nature 331, 609–611.
  • Oppo, D. W. and Lehman, S. J. 1995. Suborbital time-scale variability of North Atlantic Deep Water during the past 200,000 years. Paleoceanography 10, 901–910.
  • Rasmussen, T. L., Thomsen, E., van Weering, T. C. E. and Labeyrie, L. 1996. Rapid changes in surface and deep water formations at the Faeroe Margin during the last 58,000 years. Paleoceanography 11, 757–771.
  • Rau, G. H., Takahashi, T., Des Marais, D. J., Repeta, D. J. and Martin, J. H. 1992. The relationship between S“C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlan-tic ocean and a model. Geochim. Cosmochim. Acta 56, 1413–1419.
  • Rau, G. H., Takahashi, T. and Marais, D. J. D. 1989. Latitudinal variations in plankton PC: Implications for CO2 and productivity in past oceans. Nature 341, 516–518.
  • Santschi, P. H., Guo, L., Baskaran, M., Trumbore, S., Southon, J., Bianchi, T. S., Honeyman, B. and Cifuentes, L. 1995. Isotopic evidence for the contem-porary origin of high-molecular weight organic matter in oceanic environments. Geochim. Cosmochim. Acta 59, 625–631.
  • Sarmiento, J. L., Murnane, R. and LeQuéré, C. 1995. Air-sea CO2 transfer and the carbon budget of the North Atlantic. Phil. Trans. Roy. Soc. (Lond. B) 348, 211–219.
  • Schmitz, W. J. 1995. On the interbasin-scale thermo-haline circulation. Rev. Geophys. 33, 151–173.
  • Siegenthaler, U. and Mfinnich, K. O. 1981. “C/12C frac-tionation during CO2 transfer from air to sea. In: Carbon cycle modelling, edited by Bolin B. New York. pp. 249–257. John Wiley.
  • Siegenthaler, U., and Sarmiento, J. L. 1993. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125.
  • Siegenthaler, U., and Wenk, T. 1984. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626.
  • Skirrow, G. 1975. The dissolved gases: carbon dioxide. In: Chemical oceanography, vol. 2, 2nd edition (ed. Riley J. P. and Skirrow G.), pp. 1–181. Academic Press.
  • Smith, S. 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29, 1149–1160.
  • Smith, S. V. and Hollibaugh, J. T. 1993. Coastal meta-bolism and the oceanic organic carbon balance. Rev. Geophys. 31, 75–89.
  • Stocker, T. F., Broecker, W. S. and Wright, D. G. 1994. Carbon uptake experiments with a zonally-averaged global ocean circulation model. Tellus 46B, 103–122.
  • Stocker, T. F. and Wright, D. G. 1996. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11, 773–796.
  • Suzuki, Y. 1993. On the measurement of DOC and DON in seawater. Mar. Chem. 41, 287–288.
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observa-tional constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.
  • Toggweiler, J. and Samuels. B. 1993. New radiocarbon constraints on the upwelling of abyssal water to the ocean's surface. In: The global carbon cycle, edited by M. Heimann. NATO ASI Ser., Ser. I, 15. pp. 333–366.
  • Toggweiler, J. R., Dixon, K. and Bryan, K. 1989. Simula-tions of radiocarbon in a coarse-resolution world ocean model, 1, steady state prebomb distributions. J. Geophys. Res. 94, 8217–8242.
  • Toole, J. M., Polzin, K. L. and Schmitt, R. W. 1994. Estimates of diapycnal mixing in the abyssal ocean. Science 264, 1120–1123.
  • TTO, 1986. Transient tracers in the ocean: North Atlan-tic Study: 1 April-19 October 1981. Shipboard physical and chemical data report. Physical and Chemical Oceanographic Data Facility. Scripps Institution of Oceanography. Tech. Rep. University of California, San Diego.
  • Tyrrell, T. and Law, C. 1997. Low nitrate : phosphate ratios in the global ocean. Nature 387, 793–796.
  • Vidal, L., Labeyrie, L., Cortijo, E., Arnold, M., Duplessy, J.-C., Michel, E., Becqué, S. and Van Weer-ing, T. C. E. 1997. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27.
  • Volk, T. and Hoffert. M. I. 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: The carbon cycle and atmospheric CO2: natural variations archean to present, edited by Sundquist E. T. and Broecker W. S. Geophys. Monogr. Ser., 32. pp. 99–110. AGU. Washington, D.C.
  • Weiss, R. F. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17, 721–735.
  • Williams, P. M. and Druffel, E. R. M. 1987. Radiocar-bons in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–248.
  • Wright, D. G. 1996. An equation of state for use in ocean models: Eckart's formula revisited. J. Atm. Oceanic Technolog. 14, 735–740.
  • Wright, D. G. and Stocker, T. F. 1992. Sensitivities of a zonally averaged global ocean circulation model. J. Geophys. Res. 97, 12707-12 730.
  • Wright, D. G., Vreugdenhil, C. B. and Hughes, T. M. 1995. Vorticity dynamics and zonally averaged ocean circulation models. J. Phys. Oceanogr. 25, 2141–2154.
  • Yamanaka, Y. and Tajika, E. 1996. The role of the ver-tical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean bio-geochemical general circulation model. Global Biogeo-chem. Cycles 10, 361–382.
  • Yamanaka, Y. and Tajika, E. 1997. Role of dissolved organic matter in the marine biogeochemical cycle. Studies using an ocean biogeochemical general circula-tion model. Global Biogeochem. Cycles 11, 599–612.
  • Zhang, J., Quay, P. D. and Wilbur, D. O. 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59, 107–114.