245
Views
98
CrossRef citations to date
0
Altmetric
Original Articles

Uncertainties in assessing radiative forcing by mineral dust

, , &
Pages 491-505 | Received 04 Mar 1998, Accepted 18 Jun 1998, Published online: 15 Dec 2016

  • Ackerman, S. and Chung, H. 1992. Radiative effect of airborne dust on regional energy budgets at the top of the atmosphere. J. Appl. Meteo. 31, 223–233.
  • Boucher, O. and Anderson, T. L. 1995. GCM assessment of the sensitivity of direct climate forcing by anthropo-genic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res. 100, 26117–26134.
  • Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B., Bonnel, B., ChSTlek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N., Haywood, J. M., Iversen., T., Kato, S., Kinne, S., Kirkevag, A., Knapp, E., Lacis, A., Laszlo, I., Mishchenko, M. I., Nemesure, S., Ramaswamy, V., Roberts, D. L., Russel, P., Schlesinger, M. E., Stephens, G. L., Wagener, R., Wang, M., Wong, J. and Yang, F. 1998. Intercompar-ison of models representing short-wave radiative for-cing by sulfate aerosols. J. Geophys. Res., in press.
  • Cabot, F. 1995. Estimation de l’albedo de surface a l'éch-elle globale a l’aide de mesures satellitaires. These d’uni-versité, Université d’Orsay Paris Sud.
  • Carlson, T. B. and Benjamin, S. G. 1980. Radiative heat-ing rates for Sahara dust.J. Atmos. Sci. 37, 193–213.
  • Cautenet, G., Legrand, M., Cautenet, S., Bonnel, B. and Brogniez, G. 1992. Thermal impact of Saharan dust over land. Part I: simulation. J. Appl. Meteo. 31, 166–180.
  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E. and Hofmann, D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255, 423–430.
  • Coakley, J. A., Cess, R. D. and Yurevich, F. B. 1983. The effect of tropospheric aerosols on the Earth’s radiation budget. A parameterization for climate models. J. Atmos. Sci. 40, 116–138.
  • D’Almeida, G. A. 1987. On the variability of desert aero-sol radiative characteristics. J. Geophys. Res 92, 3017–3026.
  • Dulac, F., Tanré, D., Bergametti, G., Buat-Ménard, P., Desbois, M. and Sutton, D. 1992. Assessment of the African airborne dust mass over the Western Mediter-ranean Sea using Meteosat data. J. Geophys. Res. 97, 2489–2506.
  • Fouquart, Y. and Bonnel, B. 1980. Computations of solar heating of the Earth’s atmosphere. A new parameteriz-ation. Beitr. Phys. Atmos. 53, 35–62.
  • Fouquart, Y., Bonnel, B., Roquai, M. C., Santer, R. and Cerf, A. 1987. Observations of Saharan aerosols. Results of ECLATS field experiment. Part I. Optical thicknesses and aerosol size distributions. J. Clim. Appli. Meteor. 26, 28–37.
  • Gomes, L., Bergametti, G., Coudé-Gaussen, G. and Rognon, P. 1990. Submicron desert dusts. A sandblast-ing process. J. Geophys. Res 95, 13929–13935.
  • Grams, G. W., Blifford, I. H., Gillette, D. A. and Russel, P. B. 1974. Complex index of refraction of airborne soil particles. J. Appl. Meteo. 13, 459–471.
  • Hansen, J. E. and Travis, L. D. 1974. Light scattering in planetary atmospheres. Space Sci. Rev. 16, 527–610.
  • Haywood, J. M. and Shine, K. P. 1995. The effect of anthropogenic sulphate and soot aerosol on the clear sky radiation budget. Geophys. Res. Lett. 22, 603–606.
  • Husar, R. B., Prospero, J. M. and Stowe, J. M. 1997. Characterization of the tropospheric aerosols over the oceans with the NOAA Advanced Very High Radio-meter optcial thickness operational product. J. Geo-phys. Res. 102, 16889–16910.
  • IPCC 1995. Summary for policymakers. Cambridge University Press.
  • Ivlev, L. S. and Popova, S. I. 1973. The complex refractive indices of substances in the atmospheric-aerosol dis-persed phase. lzv. Atmosph. and Ocean. Phys. 10, 1034–1043.
  • Kiehl, J. T. and Briegleb, B. P. 1993. The relative role of sulfate aerosols and greenhouse gases in climate for-cing. Science 260, 311–314.
  • Legrand, M., Cautenet, G. and Buriez, J. C. 1992. Ther-mal impact of Saharan dust over land. Part II. Application to satellite IR remote sensing. J. Appl. Met. 31, 181–193.
  • Levin, Z. and Lindberg, J. D. 1979. Size distribution, chemical composition and optical properties of urban and desert aerosols in Israel. J. Geophys. Res. 84, 6941–6950.
  • Linberg, J. D. and Gillepsie, J. B. 1977. Relationship between particle size and imaginary refractive index in atmospheric dust. Appl. Optics 16, 2628–2630.
  • Mishchenko, M. I., Lacis, A. A., Carlson, B. E. and Travis, L. D. 1995. Non-sphericity of dust like tropo-spheric aerosol. Implications for aerosol remote sens-ing and climate modelling. Geophys. Res. Lett. 22, 1077–1080.
  • Morcrette, J. J. 1989. Technical memorandum 165: Description of the radiation scheme in the ECMWF model. ECMWF, Reading, U.K.
  • Moulin, C., Dulac, F., Lambert, C. E., Chazette, P., Jankowiak, I., Chatenet, B. and Lavenu, F. 1997. Long term daily monitoring of Saharan dust load over marine areas using meteosat ISCCP-B2 data (2). Accuracy of the method and validation using sun photometers measurements. J. Geophys. Res. 102, 16959–16968.
  • Patterson, E. M. 1981. Optical properties of the crustal aerosol. Relation to chemical and physical character-istics. J. Geophys. Res. 86, 3236–3236.
  • Payne, R. E. 1972. Albedo of the sea surface. J. Atmos. Sci. 29, 959–970.
  • Penner, J. E., Dickinson, R. E. and O’Neill, C. A. 1992. Effects of aerosol from biomass burning on the global radiation budget. Science 256, 1432–1434.
  • Riehl, H. 1954. Tropical meteorology. McGraw-Hill.
  • Schulz, M., Balkanski, Y., Dulac, F. and Guelle, W. 1998. Treatment of aerosol size distribution in a global trans-port model: validation with satellite-derived observa-tions for a Saharan dust episode. J. Geophys. Res. 103, 10579–10592.
  • Schütz, L. 1979. Sahara dust transport over the North Atlantic Ocean. Model calculations and measure-ments. In: Saharan dust, pp. 267–277. John Wiley.
  • Schütz, L. 1980. Long range transport of desert dust with special emphasis on the sahara. Ann. N. Y. Acad. Sci. 338, 15–20.
  • Schwartz, S. E. 1996. The whitehouse effect. Shortwave radiative forcing of climate by anthropogenic aerosols. An overview. J. Aer. Sci. 27, 359–382.
  • Shettle, E. P. 1984. Optical and radiative properties of a desert aerosol model. In Proceedings of the Symposium on Radiation in the atmosphere, edited by G. Fiocco, pp. 74–77. A. Deepak, Hampton, Va.
  • Sokolik, I., Andronova, A. and Johnson, T. C. 1993. Complex refractive index of atmospheric dust aerosols. Atmos. Env. 27A, 2495–2502.
  • Sokolik, I. and Golitsyn, G. 1993. Investigation of optical and radiative properties of atmospheric dust aerosols. Atmos. Env. 27A, 2509–2517.
  • Sokolik, I. N. and Toon, O. B. 1996. Direct radiative forcing by anthropogenic airborne mineral aerosol. Nature 381, 681–683.
  • Sokolik, I. N., Toon, O. B. and Bergstrom, R. W. (1998). Modeling the radiative characteristics of airborne min-eral aerosols at infrared wavelength. J. Geophys. Res. 103, 8813–8826.
  • Swap, R., Garstang, M., Greco, S., Talbot, R. and Gac, J. Y. 1992. Sahara dust in the Amazon bassin. Tellus 44B, 133–149.
  • Tanré, D., Devaux, C., Herman, M., Santer, R. and Gac, J. Y. 1988. Radiative properties of desert aerosols by optical ground based measurements at solar wave-lengths. J. Geophys. Res. 93, 14223–14231.
  • Tegen, I. and Lacis, A. A. 1996. Modeling of particle size distribution and its influence on the radiative proper-ties of mineral dust aerosol. J. Geophys. Res. 101, 19237–19244.
  • Tegen, I., Lacis, A. A. and Fung, I. 1996. The influence of mineral aerosols from disturbed soils on the global radiation budget. Nature 380, 419–422.
  • Toon, O. B., Pollack, J. B. and Sagan, C. 1977. Physical properties of the particles composing the martian dust storm of 1971-1972. Icarus 30, 663–696.
  • Twomey, S. A., Piepgrass, M. and Wolfe, T. 1984. An assessment of the impact of pollution on global cloud albedo. Tellus 36B, 243–249.
  • Volz, F. E. 1973. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice and flyash. Appl. Optics 12, 564–568.
  • Weare, B. C., Temkis, R. L. and Snell, F. M. 1974. Aerosol and climate: some further modifications. Science 186, 827–828.