106
Views
53
CrossRef citations to date
0
Altmetric
Articles

Gravity waves in the mesosphere generated by tropospheric convention

&
Pages 45-58 | Received 22 May 1998, Accepted 03 Aug 1998, Published online: 15 Dec 2016

References

  • Alexander, M. J. 1996. A simulated spectrum of convect-ively generated gravity waves: propagation from the tropopause to the mesopause, and effects on the middle atmosphere. J. Geophys. Res. 101, 1571–1588.
  • Alexander, M. J., Holton, J. R. and Durran, D. R. 1995. The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci. 52, 2212–2226.
  • Andreassen, O., Wasberg, C. E., Fritts, D. C. and Isler, J. R. 1994. Gravity wave breaking in two and three dimensions (1). Model description and comparison of two-dimensional evolutions. J. Geophys. Res. 99, 8095–8108.
  • Bacmeister, J. T. and Schoeberl, M. R. 1989. Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci. 46, 2109–2134.
  • Durran, D. R. 1995. Do breaking mountain waves decel-erate the local mean flow? J. Atmos. Sci. 52,4010–4032.
  • Durran, D. R. and Klemp, J. B. 1983. A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev. 111, 2341–2361.
  • Espy, P. J. and Huppi, R. 1997. The intertropical conver-gence zone as a source of short-period gravity waves near the Equator. J. Atmos. Sol-Terr. Phys. 59, 1665–1671.
  • Fovell, R., Durran, D. and Holton, J. R. 1992. Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci. 49, 1427–1442.
  • Fritts, D. C. 1989. A review of gravity wave saturation processes, effects, and variability in the middle atmo-sphere. Pure App!. Geophys. 130, 343–371.
  • Fritts, D. C. and Vincent, R. A. 1987. Mesospheric momentum flux studies at Adelaide, Australia: obser-vations and a gravity wave-tidal interaction model. J. Atmos. Sci. 44, 605–619.
  • Garcia, R. R. and Solomon, S. 1985. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermo-sphere. J. Geophys. Res. 90, 3850–3868.
  • Hauchecorne, A., Chanin, M. L. and Wilson, R. 1987. Mesospheric temperature inversion and gravity wave breaking. Geophys. Res. Letts. 14, 933–936.
  • Holton, J. R. 1983. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci. 40, 2497–2507.
  • Holton, J. R. and Durran, D. 1993. Convectively gener-ated stratospheric gravity waves: the role of mean wind shear. In: Coupling processes in the lower and middle atmosphere, (ed. Thrane, E. V. et al). Kluwer Academic Publishers, pp. 175–189.
  • Holton, J. R. and Schoeberl, M. R. 1988. The role of gravity wave generated advection and diffusion in the transport of tracers in the mesosphere. J. Geophys. Res. 93, 11075–11082.
  • Leblanc, T., Hauchecorne, A., Chanin, M.-L., Rodg-ers, C., Taylor, F. and Livesey, N. 1995. Mesospheric temperature inversions as seen by ISAMS in December 1991. Geophys. Res. Letts. 22, 1485–1488.
  • Leovy, C. B. 1964. Simple models of thermally driven mesospheric circulation. J. Atmos. Sci. 21, 327–341.
  • Lindzen, R. S. 1973. Wave-mean flow interactions in the upper atmosphere. Bound.-Layer Meteor. 4, 327–343.
  • Lindzen, R. S. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714.
  • Liibken, F. J., Fricke, K. H. and Langer, M. 1996. Noctilucent clouds and the thermal structure near the Arctic mesopause in summer. J. Geophys. Res. 101, 9489–9508.
  • McFarlane, N. A. 1987. The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 44, 1775–1800.
  • McLandress, C. 1998. On the importance of gravity waves in the middle atmosphere and their parameteriz-ation in general circulation models. J. Atmos. Terr. Phys. 60, accepted.
  • Palmer, T. N., Shutts, G. J. and Swinbank, R. 1986. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameteriz-ation. Quart. J. Roy. Meteor. Soc. 112, 1001–10039.
  • Prusa, J. M., Smolarkiewicz, P. K. and Garcia, R. R. 1996. Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci. 53, 2186–2216.
  • Swenson, G. R. and Espy, P. J. 1995. Observations of Tellus 51A-B (1999), 1 2-Dimensional Airglow Structure and Na Density from the ALOHA, October 9, 1993 “Storm Flight”. Geophys. Res. Letts. 22, 2845–2848.
  • Taylor, M. J. and Hapgood, M. A. 1988. The identifica-tion of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emission. Planet. Space Sci. 36, 975–985.
  • Weisman, M. L. and Klemp, J. B. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev. 110, 504–520.
  • Whiteway, J. A., Carswell, A.I. and Ward, W. E. 1995. Mesospheric temperature inversions with overlying nearly adiabatic lapse rate: An indication of a well-mixed turbulent layer. Geophys. Res. Letts. 22, 1201–1204.
  • Zhu, X. and Holton, J.R.. 1987. Mean fields induced by local gravity-wave forcing in the middle atmosphere. J. Atmos. Sci. 44, 2620–2630