179
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

, , &
Pages 919-933 | Received 15 Feb 1999, Accepted 13 Sep 1999, Published online: 15 Dec 2016

  • Ball, B. C., Dobbie, K. E., Parker, J. P. and Smith, K. A. 1997a. The influence of gas transport and porosity on methane oxidation in soils. J. Geophys. Res. 102, 23301–23308.
  • Ball, B. C., Smith, K. A., Klemedtsson, L., Brumme, R., Sitaula, B. K., Hansen, S., Priemé, A., MacDonald, J. and Horgan, G. W. 1997b. The influence of soil gas transport properties on methane oxidation in a selection of northern european soils. J. Geophys. Res. 102, 23309–23317.
  • Bender, M. and Conrad, R. 1994. Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochemistry 27, 97–112.
  • Conrad, R. 1988. Biogeochemistry and ecophysiology of atmospheric CO and H2. Adv. Microb. Ecol. 10, 231–283.
  • Conrad, R. and Seiler, W. 1980a. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. J. Geophys. Res. 85, 5493–5498.
  • Conrad, R. and Seiler, W. 1980b. Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl. Environ. Microb. 40, 437–445.
  • Conrad, R. and Seiler, W. 1985a. Influence of temperature, moisture, and organic carbon on the flux of H2 and CO between soil and atmosphere: field studies in subtropical regions. J. Geophys. Res. 90, 5699–5709.
  • Conrad, R. and Seiler, W. 1985b. Characteristics of abiological carbon monoxide formation from soil organic matter, humic acids, and phenolic compounds. Environ. Sci. Technol. 19, 1165–1169.
  • Conrad, R., Weber, M. and Seiler, W. 1983. Kinetics and electron transport of soil hydrogenases catalyzing the
  • oxidation of atmospheric hydrogen. Soil Boil. Biochem. 15, 167–173.
  • Don, H., Katruff, L. and Levin, I. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26, 697–713.
  • Ehhalt, D. H., Schmidt, U. and Heidt, L. E. 1977. Vertical profiles of molecular hydrogen in the troposphere and stratosphere. J. Geophys. Res. 82, 5907–5911.
  • Fishman, J. and Crutzen, P. J. 1978. The origin of ozone in the troposphere. Nature 274, 855–858.
  • Heichel, G. H. 1973. Removal of carbon monoxide by field and forest soils. Environmental Quality 2,419–423.
  • Ishihara, Y., Shimojima, E. and Harada, H. 1992. Water vapor transfer beneath bare soil where evaporation is influenced by a turbulent surface wind. Journal of Hydrology 131, 63–204.
  • Khalil, M. A. K. and Rasmussen, R. A. 1990. Global cycle of carbon monoxide: trends and mass balance. Chemosphere 20, 227–242.
  • Khalil, M. A. K. and Rasmussen, R. A. 1994. Global decrease in atmospheric carbon monoxide concentration. Nature 370, 639–641.
  • Kuhlbusch, T. A. J., Zepp, R. G., Miller, W. L. and Burke, R. A. 1998. Carbon monoxide fluxes of different soil layers in upland canadian boreal forests. Tellus 50B, 353–365.
  • Liebl, K. H. and Seiler, W. 1976. CO and H2 destruction at the soil surface. In: Microbial producrion and utilization of gases (ed. Schlegel, H. G., Gottschalk, G. and Pfenning, N.). Goltze, Götingen, Germany, pp. 215–229
  • McMahon, T. A. and Denison, P.J. 1979. Empirical atmospheric deposition parameters - a survey. Atmos. Envir. 13, 571–585.
  • Marrero, T. R. and Mason, E. A. 1972. Gaseous diffusion coefficients. J. Phys Chem. Ref. Data 1, 3–118.
  • Matsueda, H., Inoue, H. Y., Sawa, Y., Tsutsumi, Y. and Ishii, M. 1998. Carbon monoxide in the upper tropo-sphere over the western Pacific between 1993 and 1996. J. Geophy. Res. 103, 19,093-19,110.
  • Millington, R. J. and Quirk, J. M. 1961. Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207.
  • Moxley, J. M. and Smith, K. A. 1998a. Factors affecting utilisation of atmospheric CO by soils. Soil Biol. Biochem. 30, 65–79.
  • Moxley, J. M. and Smith, K. A. 1998b. Carbon monoxide production and emission by some scottish soils. Tellus 50B, 151–162.
  • National Astronomical Observatory 1994. Science table. Maruzen, Tokyo, pp. 454 (in Japanese).
  • Novelli, P. C., Masarie, K. A. and Lang, P. M. 1998. Distribution and recent changes of carbon monoxide in the lower troposphere. J. Geophys. Res. 103, 19015–19033.
  • Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R. and Elkins, J. W. 1999. Molecular hydrogen in the troposphere: Global distributions, trends, and budget. J. Geophys. Res., in press.
  • Potter, C. S., Klooster, S. A. and Chatfield, R. B. 1996. Consumption and production of carbon monoxide in soils: a glocal model analysis of spatial and seasonal variation. Chemosphere 33, 1175–1193.
  • Sallam, A., Jury, W. A. and Jetey, J. 1984. Measurement of gas diffusion coefficient under relatively low air-filled porosity. Soil Sci. Soc. Am. J. 48, 3–6.
  • Sanhueza, E., Dong, Y., Scharffe, D., Lobert, J. M. and Crutzen, P. J. 1998. Carbon monoxide uptake by temperate forest soils: effects of leaves and humus layers. Tellus 50B, 51–58.
  • Sanhueza, E., Donoso, L., Scharffe, D. and Crutzen, P. J. 1994. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands. J. Geophys. Res. 99, 16,421-16,427.
  • Scharffe, D., Hao, W. M., Donoso, L., Crutzen, P. J. and Sanhueza, E. 1990. Soil fluxes and atmospheric concentration of CO and CH4 in the northern part of the
  • guayana shield, Venezuela. J. Geophys. Res. 95, 22475–22480.
  • Schmidt, U. 1978. The latitudinal and vertical distribution of molecular hydrogen in the troposphere. J. Geo-phys. Res. 83, 941–946.
  • Seiler, W. and Conrad, R. 1987. Contribution of tropical ecosystem to the global budgets of trace gases, especially CH4, H2, CO and N20. In: The Geophysiology of Amazonia (ed. R. E. Dickinson). Wiley, New York, 133–162.
  • Seiler, W., Giehl, H. and Bunse, G. 1978. The influence of plants on atmospheric carbon monoxide. Pageoph. 116, 439–451.
  • Seiler, W., Giehl, H. and Roggendorf, P. 1980. Detection of carbon monoxide and hydrogen by conversion of mercury oxide to mercury vapor. Atmos. Tech. 12, 40–45.
  • Smith, K. A., Bremner, J. M. and Tabatabai, M. A. 1973. Sorption of gaseous atmospheric pollutants by soils. Soil Sci. 116, 313–319.
  • Spratt, H. G. and Hubbard, J. S. 1981. Carbon monoxide metabolism in roadside soils. Appl. Environ. Microbiol. 41, 1192–1201.
  • Tarr, M. A., Miller, W. L. and Zepp, R. G. 1995. Direct carbon monoxide photoproduction from plant matter. J. Geophys. Res. 100, 11403–11413.
  • United States Department of Agriculture, Soil Conservation Service 1994. Keys to soil taxonomy, 6th edition. Pocahontas, Blacksburg Virginia.
  • Yonemura, S., Kawashima, S. and Tsuruta, H. 1999. Continuous measurements of CO and H2 deposition velocities onto an andisol: uptake control by soil moisture. Tellus 51B, 688–700.
  • Zepp, R. G., Miller, W. L., Burke, R. A., Parsons, D. A. B. and Scholes, M. C. 1996. Effects moisture and burning on soil-atmosphere exchange of trace carbon gases in southern African savannah. J. Geophys. Res. 101, 23699–23706.
  • Zepp, R. G., Miller, W. L., Tarr, M. A. and Burke, R. A. 1997. Soil-atmosphere fluxes of carbon monoxide during early stages of postfire succession in upland canadian boreal forests. J. Geophys. Res. 102, 29,301-29,311.