250
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period

, , &
Pages 231-249 | Received 15 Jan 2001, Accepted 17 Jan 2002, Published online: 15 Dec 2016

References

  • Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E., Aaltonen, H., Nykänen, H. and Martikainen, P. J. 1997. Reconstruction of the carbon balance for micro-sites in a boreal oligotrophic pine fen, Finland. Oecologia 110, 423–431.
  • Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C. and Dise, N. B. 1992. Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska. J. Geophys. Res. 97, 16,645-16,660.
  • Botch, M. S., Kobak, K. I., Vinson, T. S. and Kolchugina, T. P. 1995. Carbon pools and accumulation in peat-lands of the former Soviet Union. Glob. Biogeochem. Cycles 9, 37–46.
  • Bubier, J. L. 1995. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J. Ecol. 83, 403–420.
  • Bubier, J. L., Moore, T. R., Bellisario, L., Comer, N. T. and Crill, P. M. 1995. Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Glob. Biogeochem. Cycles 9, 455–470.
  • Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. E., Kelley, C. A., Tyler, S. C., Romanowicz, E. H. and Lazrus, A. 1995. Radiocarbon evidence for the sub-strates supporting methane formation within northern Minnesota peatlands. Geochim. Cosmochim. Acta 59, 3663–3668.
  • Chanton, J. P., Whiting, G. J., Happell, J. D. and Gerard, G. 1993. Contrasting rates and diurnal pat-terns of methane emission from emergent aquatic macrophytes. Aquat. Bot. 46, 111–128.
  • Christensen, T. R. 1993. Methane emission from arctic tundra. Biogeochemistry 21, 117–139.
  • Christensen, T. R., Jonasson, S., Callaghan, T. V. and Havström, M. 1995. Spatial variation in high-latitude methane flux along a transsect across Siberian and European tundra environments. J. Geophys. Res. 100, 21,035-21,045.
  • Cicerone, R. J. and Oremland, R. S. 1988. Biogeochem-ical aspects of atmospheric methane. Glob. Biogeo-chem. Cycles 2, 299–327.
  • Dise, N. B. 1992. Winter fluxes of methane from Minne-sota peatlands. Biogeochemistry 17, 71–83.
  • Dise, N. B., Gorham, E. and Verry, E. S. 1993. Environ-mental factors controlling methane emissions from peatlands in Northern Minnesota. J. Geophys. Res. 98, 10,583-10,594.
  • Edwards, G. C., Neumann, H. H., den Hartog, G., Thur-tell, G. W. and Kidd, G. 1994. Ed dy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetland Study NOWES. J. Geophys. Res. 99, 1511-1517.
  • Friborg, T., Christensen, T. R. and Sogaard, H. 1997. Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micro-meteorological techniques. Geophys. Res. Lett. 24, 3061–3064.
  • Frolking, S. and Crill, P. M. 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modeling. Glob. Biogeochem. Cycles 8, 385–397.
  • Glooschenko, W. A., Roulet, N. T., Barnes, L. A., Schiff, H. I. and McAdie, H. G. 1994. The Northern Wetland Study NOWES: an overview. J. Geophys. Res. 99, 1423–1428.
  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195.
  • Granberg, G., Mikkelä, C., Sundh, I., Svensson, B. H. and Nilsson, M. 1997. Sources of spatial variation in methane emission from mires in northern Sweden: a mechanistic approach in statistical modeling. Glob. Biogeochem. Cycles 11, 135-150.
  • Hesslein, R. H. 1976. An in situ sampler for close pore water studies. Limnol. Oceanogr. 21, 912–914.
  • Heyer, J. and Suckow, R. 1985. Okologische Unter-suchungen der Methanoxydation in einem sauren Moorsee. Limnologica 16, 247–266.
  • Hutchin, P. R., Press, M. C., Lee, J. A. and Ashenden, T. W. 1996. Methane emission rates from an ombro-trophic mire show marked seasonality which is inde-pendent of nitrogen supply and soil temperature. Atmos. Environ. 30, 3011–3015.
  • IPCC 1992. Intergovermental Panel on Climate Change: Climate Change 1992. The Supplementary report to the IPCC Scientific Assesment Report prepared for IPCC by Working Group 1 (eds. J. T. Houghton, B. A. Callander and S. K. Varney). Cambridge University Press, Cambridge, UK, 1-200.
  • Kettunen, A., Kaitala, V., Alm, J., Silvola, J., Nykänen, H. and Martikainen, P. J. 1996. Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland. Glob. Biogeochem. Cycles 10, 457–471.
  • King, G. M., Quay, P. D. and Lansdown, J. M. 1989 The “C/“C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations. J. Geophys. Res. 94, 18,273-18,277.
  • Kotsyurbenko, 0. R., Nozhevnikova, A. N. and Zavarzin, G. A. 1993. Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. Chemosphere 27, 1745–1761.
  • Makov, G. A., Bazhin, N. M. and Efremova, T. T. 1994. Methane emission from wetlands in the region between the Ob and Tom rivers. Chemistry for Sustain-able Development 2-3, 541-544.
  • Matthews, E. 1993. Wetlands. In: Atmospheric methane: sources, sinks, and role in global change (ed. M. A. K. Khalil). Springer Verlag, Berlin, 314-361.
  • Melloh, R. and Crill, P. M. 1996. Winter methane dynamics in a temperate peatland. Glob. Biogeochem. Cycles 10, 247–254.
  • Mikkeld, C., Sundh, I., Svensson, B. H. and Nilsson, M. 1995. Diurnal variation in methane emission in rela-tion to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochem-istry 28, 93-114.
  • Moore, T. R. and Dalva, M. 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Bio-chem. 29, 1157–1164.
  • Moore, T. R., Heyes, A. and Roulet, N. T. 1994. Methane emissions from wetlands, southern Hudson Bay low-land. J. Geophys. Res. 99, 1455–1467.
  • Moore, T. R. and Roulet, N. T. 1993. Methane flux: water table relations in northern wetlands. Geophys. Res. Lett. 20, 587–590.
  • Moore, T. R., Roulet, N. T. and Knowles, R. 1990. Spatial and temporal variations of methane flux from subarc-tic/northern boreal fens. Glob. Biogeochem. Cycles 4, 29–46.
  • Moosavi, S. C., Crill, P. M., Pullman, E. R., Funk, D. W. and Peterson, K. M. 1996. Control of CH4 flux from an Alaskan boreal wetland. Glob. Biogeochem. Cycles 10, 287–296.
  • Morrissey, L. A. and Livingston, G. P. 1992. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. J. Geophys. Res. 97, 16,661-16,670.
  • Nykänen, H., Alm, J., Lang, K., Silvola, J. and Marti-kainen, P. J. 1995. Emission of CH4, N20 and CO2 from a virgin fen and a fen drained for grassland in Finland. J. Biogeogr. 22, 351–357.
  • Oechel, W. C. and Vourlitis, G. L. 1994. The effects of climate change on land-atmosphere feedbacks in arctic tundra regions [Review]. Trends Ecol. Evolution 9, 324–329.
  • Panikov, N. S., Belyaev, A. S., Semenov, A. F. and Zelenev, V. V. 1993. Methane production and uptake in some terrestrial ecosystems of the former USSR. In: Biogeochemistry of global change - radiatively active trace gases (ed. R. S. Oremland). Chapman and Hall, New York, 221–244.
  • Panikov, N. S., Sizova, M. V., Zelenev, V. V., Machov, G. A., Naumov, A. V. and Gadzhiev, I. M. 1995. Methane and carbon dioxide emission from several Vasyugan wetlands: spatial and temporal flux vari-ations. Ecol. Chem. 4, 13–23.
  • Roulet, N. T., Moore, T. R., Bubier, J. L. and Lafleur, P. 1992. Northern fens: methane flux and climatic change. Tellus 44B, 100–105.
  • Saarnio, S., Alm, J., Silvola, J., Lohila, A., Nykänen, H. and Martikainen, P. J. 1997. Seasonal variation in CH4 emissions and production and oxidation poten-tials at microsites on an oligotrophic pine fen. Oecologia 110, 414–422.
  • Sebacher, H. J., Harriss, R. C., Bartlett, K. B., Sebacher, S. M. and Grice, S. S. 1986. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus 38B, 1–10.
  • Semiletov, I. P., Pipko, I. I., Pivovarov, N. Y., Popov, V. V., Zimov, S. A., Voropaev, Y. V. and Davidov, S. P. 1996. Atmospheric carbon emission from north Asian lakes: a factor of global significance. Atmos. Environ. 30, 1657–1671.
  • Smith, L. K. and Lewis, W. M. 1992. Seasonality of methane emissions from five lakes and associated wet-lands of the Colorado Rockies. Glob. Biogeochem. Cycles 6, 323–338.
  • Sundh, I., Nilsson, M., Granberg, G. and Svensson, B. H. 1994. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb. Ecol. 27, 253-265.
  • Svensson, B. H. 1976. Methane production in tundra peat. Microbial Production and Utilization of Gases H2, CO, CH4 (eds. H. G. Schlegel, G. Gottschalk and N. Pfennig). G6ttingen, 135-139.
  • Svensson, B. H. and Rosswall, T. 1984. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43, 341–350.
  • Svensson, B. H. 1984. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. App!. Environ. Microbiol. 48, 389–394.
  • Thomas, K. L., Benstead, J., Davies, K. L. and Lloyd, D. 1996. Role of wetland plants in the diurnal control of CH4 and CO, fluxes in peat. Soil Biol. Biochem. 28, 17–23.
  • Valentine, D. W., Holland, E. A. and Schimel, D. S. 1994. Ecosystem and physiological controls over methane production in northern wetlands. J. Geophys. Res. 99, 1563–1571.
  • Vourlitis, G. L., Oechel, W. C., Hastings, S. J. and Jenk-ins, M. A. 1993. The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystem on the north slope of Alaska. Chemosphere 26, 329–338.
  • Waddington, J. M. and Roulet, N. T. 1996. Atmosphere-wetland carbon exchanges: Scale dependency of CO, and CH4 exchange on the developmental topography of a peatland. Glob. Biogeochem. Cycles 10, 233–245.
  • Wagner, D. and Pfeiffer, E. M. 1997. Two temperature optima of methane production in a typical soil of the Elbe River marshland. F EMS Microbiol. Ecol. 22, 145–153.
  • Whalen, S. C. and Reeburgh, W. S. 1988. A methane flux time series for tundra environments. Glob. Biogeochem. Cycles 2, 399–409.
  • Whalen, S. C. and Reeburgh, W. S. 1990. A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42B, 237–249.
  • Whalen, S. C. and Reeburgh, W. S. 1992. Interannual variations in tundra methane emissions: a four-year time series at fixed sites. Glob. Biogeochem. Cycles 6, 139–159.
  • Whiting, G. J. and Chanton, J. P. 1993. Primary produc-tion control of methane emission from wetlands. Nature 364, 794–795.
  • Whiting, G. J. and Chanton, J. P. 1996. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquat. Bot. 54, 237–253.
  • Windsor, J., Moore, T. R. and Roulet, N. T. 1992. Epi-sodic fluxes of methane from subarctic fens. Can. J. Soil Sci. 72, 441–452.
  • Yavitt, J. B., Williams, C. J. and Wieder, R. K. 1997. Production of methane and carbon dioxide in peatland ecosystems across North America — effects of tem-perature, aeration, and organic chemistry of peat. Geomicrobiol. J. 14, 299–316.
  • Zimov, S. A., Voropaev, Y. V., Semiletov, I. P., Davidov, S. P., Prosiannikov, S. F., Chapin III, F. S., Chapin, M. C., Trumbore, S. and Tyler, S. 1997. North Siberian Lakes: a methane source fueled by Pleistocene carbon. Science 277, 800-802.