243
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Seasonal and spatial variability in soil CO2 efflux rates for a central SiberianPinus sylvestris forest

, , , , , , , & show all
Pages 552-567 | Received 02 Jul 2001, Accepted 27 May 2002, Published online: 15 Dec 2016

References

  • Albert, M. R. and Perron, F. E. 2000. Ice layer and surface crust permeability in a seasonal snow pack. Hydrol. Pro-cesses 14, 3207–3214.
  • Arneth, A., Kelliher, F. M., Gower, S. T., Scott, N. A., Byers, J. N. and McSeveny, T. M. 1998. Environmental vari-ables regulating soil carbon dioxide efflux following clear-cutting of a Pinus radiata D. Don plantation. J. Geophys. Res. 103, 5695–5705.
  • Baldocchi, D. 1997. Flux footprints within and over forest canopies. Boundary-Layer Meteorol. 85, 273–292.
  • Bird, M., Santruckova, H., Arneth, A., Grigoriev, S., Gleixner, G., Kalashnikov, Y. N., Lloyd, J. and Schulze, E.-D. 2002. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus 54B, this issue. Bobkova, K. S. 1987. Biological productivity of north-eastern European forests. Nauka, Leningrad, 156 pp. (in Russian).
  • Brooks, P. D., Williams, M. W. and Schmidt, S. K. 1996. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32, 93–113.
  • Brown, D., MacFarlane, J. D. and Kershaw, K. A. 1983. Physiological—environmental interactions in lichens XVI. A re-examination of the resaturation respiration phenom-ena. New Phytol. 93, 237–246.
  • Buchmann, N. 2001. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology Biochem. 32, 1625–1635.
  • Cochran, V. L., Elliot, L. F. and Lewis, C. F. 1989. Soil biomass and enzyme activity in subarctic agricultural and forest soils. Biol. Fert. Soils 7, 283–288.
  • Colbeck, S. C. and Anderson, E. A. 1982. The permeability of a melting snow cover. Wat. Resour. Res. 18, 904–908.
  • Constantin, J., Grelle, A., Ibrom, A. and Morgenstern, K. 1999. Flux partitioning between understorey and over-storey in a boreal spruce/pine forest determined by the eddy covariance method. Agric. For. Meteorol. 98/99,629–643.
  • Domisch, T., Finer, L. and Lehto, T. 2001. Effects of soil tem-perature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol. 21, 465–472.
  • Eugster, W. and Senn, W. 1995. A cospectral correction model for measurements of turbulent NO2 flux. Boundary-Layer Meteorol. 74, 321–340.
  • Fang, C. and Moncrieff, J. B. 1998. An opened-top chamber for measuring soil respiration and the influence of pressure differences on CO2 efflux measurement. Functional Ecol. 12,319–330.
  • Gauslaa, Y. and Solhaug, K. A. 1996. Differences in the sus-ceptibility to light stress between epiphytic lichens of an-cient and young boreal forest stands. Functional Ecology 10, 344–354.
  • Grogan, P. and Chapin, F. S., BI, 1999. Arctic soil respira-tion: effects of climate and vegetation depend on season. Ecosystems 2,451-459.
  • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Measurements of carbon seques-tration by long-term eddy covariance: methods and criti-cal evaluation of accuracy. Global Change Biol. 2, 169-182.
  • Gulledge, J. and Schimel, J. P. 2000. Controls on soil car-bon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems 3, 269–282.
  • Hanson, P. J., Edwards, N. T., Garten, C. T. and Andrews, J. A. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115-146.
  • Healy, R. W., Striegl, R. J., Hutchinson, G. L. and Livingston, G. P. 1996. Numerical evaluation of static-chamber mea-surements of soil-atmosphere gas exchange: identifica-tion of physical processes. Soil. Sci. Soc. Am. J. 60, 740-747.
  • Helal, H. M. and Sauerbeck, D. 1991. Short term determina-tion of the actual respiration rate in intact plant roots. In: Plant roots and their environment (eds. B. L. Mc-Michael, and H. Persson). Elsevier Applied Science, London, 88-92.
  • Hogberg, R, Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Hogberg, M. N., Nyberg, G., Ottosson-Löfvenius, M. O. and Read, D. J. 2001. Large-scale forest girdling shows that current photosynthesis drives soil res-piration. Nature 411, 789-792.
  • Janssens, I. A., Kowalski, A. S. and Caulemans, R. 2001. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric. For. Meteorol. 106, 61–69.
  • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncrieff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variations of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J. Geophys. Res. 102, 28953-28966.
  • Kelliher, F. M., Lloyd, J., Arneth, A., Lohker, B., Byers, J. N., McSeveny, T. M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlagin, A., Zeigler, W., Bauer, G., Wong, S. C. and Schulze, E.-D. 1999. Carbon dioxide ef-flux from the floor of a central Siberian pine forest. Agric. For. Meteorol. 94, 217-232.
  • Kershaw, K. A. 1977. Studies on lichen-dominated systems. XX. An examination of some aspects of the northern boreal lichen woodlands in Canada. Can. J. Bot. 55, 393-410.
  • Law, B. E., Baldocchi, D. D. and Anthoni, P.M. 1999. Below canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For. Meteorol. 94, 171–188.
  • Le Dantec, V., Epron, D. and Dufrene, E. 1999. Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant and Soil 214, 125–132.
  • Lloyd, J. and Taylor, J. A. 1994. On the temperature de-pendence of soil respiration. Functional Ecol. 8, 315–323.
  • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated at-mospheric CO2 concentrations and their interaction with plant nutrient status. Functional Ecology 10, 4–32.
  • Lloyd, J., Shibistova, O., Zolotulchine, D., Kolle, O., Arneth, A., Wirth, Ch., Styles, J. M., Tchebalcova, N. M. and Schulze, E.-D. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B, this issue.
  • Mast, M. A., Wickland, K. R, Striegl, R. T. and Clow, D. W. 1998. Winter fluxes of CO2 and NI-I4 from sub-alpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem. Cycles 12, 607–620.
  • Melloh, R. A. and Crill, P.M. 1996. Winter methane dynamics in a temperate peatland. Global Biogeochem. Cycles 10, 247-254.
  • McMillen, R. T. 1988. An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol. 43, 231–245.
  • Moren, A.-S. and Lindroth, A. 2000. CO2 exchange at the floor of a boreal forest. Agric. For. Meteorol. 101, 1–14.
  • Nelson, D. W. and Sommers, L. E. 1982. Total C, organic C and organic matter. Agronomy 9, 539–579.
  • Norman, J. M., Kucharilc, C. J., Gower, S. T., Baldocchi, D. D., Cril, P. M., Rayment, R., Savage, K. and Sriegel, R. G. 1998. A comparison of six methods for measur-ing soil surface carbon dioxide fluxes. J. Geophysical Res. 102D, 28771-28777.
  • Oechel, W. C., Vourlitis, G. and Hasting, S. J. 1997. Cold season CO2 emission from arctic soils. Global Bio-geochem. Cycles 11, 163–172.
  • Orchard, V. A. and Cook, F. J. 1983. Relationship between soil respiration and soil moisture. Soil Biology Biochem. 15,447–453.
  • Palmqvist, K. 2000. Carbon economy in lichens. New Phytol. 148, 11–36.
  • Prokushkin, S. G. 1982. Mineral nutrition of Scots pine on cold soi/s.Nauka, Novosibirsk, 329 pp. (in Russian).
  • Raich, J. W. and Schlesinger, W. H. 1992. The global car-bon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81–99.
  • Rayment, M. B. and Jarvis, P. G. 2000. Temporal and spatial variation of soil efflux in a Canadian boreal forest. Soil Biol. Biochem. 32, 33–45.
  • Ross, D. J., Kelliher, E M. and Tate, K. R. 1999. Microbial processes in relation to carbon, nitrogen and temperature regimes in litter and in a sandy mineral soil from a central Siberia Pinus sylvestris L. forest. Soil Biol. Biochem. 31, 757–767.
  • Sawamoto, T., Hatano, R., Yajima, R., Takahashi, K. and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosys-tems with different histories of forest fire. Soil Sci. Plant Nutrition 46,31–42.
  • Schulze, E.-D., Lloyd, J., Kelliher, F. M., Wirth, Ch., Rebmann, C., Liihker, B., Mund, M., Knohl, A. I., Milyukova, M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M., Tchebakova, N. and Vygodskaya, N. N. 1999. Productivity of forests in the Eurosiberian boreal re-gion and their potential to act as a carbon sink - a synthesis. Global Change Biol. 6, 703-722.
  • Schulze, E.-D., Vygodskaya, N. N., Tschebalcova, N., Czimczilc, C. I., Kozlov, D., Llyod, J., Mollicone, D., Myachkova, E., Sidorov, K., Varlagin, A. and Wirth, C. 2002. The Eurosiberian transect: an introduction to the ex-perimental region. Tellus 54B, this issue.
  • Shibistova, O., Lloyd, J., Zrazhevskaya, G., Arneth, A., Kolle, O., Knohl, A., Astralchantseva, N., Shijneva, I. and Schmerler, J. 2002. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus 54B, this issue.
  • Shvidenlco, A. and Nilsson, S. 1994. What do we know about the Siberian forests. Ambio 23, 396–404.
  • Skogland, T., Lomeland, S. and Golcsoyr, J. 1988. Respiratory burst after freezing and thawing of soil: Experiments with soil bacteria. Soil Biol. Biochem. 20, 851–856.
  • Soil Survey Staff. 1999. Keys to Soil Taxonomy. Pocahontas Press, Blackburg, Virginia, USA. 600 pp.
  • Sommerfeld, R. A., Musselman, R. C., Reuss, J. O. and Mosier, A. R. 1991. Preliminary measurements of CO2 in melting snow. Geophys. Res. Lett. 18, 1225-1228.
  • Tchebalcova, N. M., Kolle, O., Zolotulchine, D., Arneth, A., Styles, J., Vygodskaya, N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus, 54B, this issue.
  • Thierron, V. and Laudelout, H. 1996. Contribution of root respiration to total CO2 efflux from the soil of deciduous forest. Can. J. For. Res. 26, 1142–1148.
  • Wardle, D. A. 1998. Controls on temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 30, 1627–1637.
  • Winston, G. C., Sundquist, E. T, Stephens, B. B. and Trumbore, S. E. 1997. Winter CO2 fluxes in a boreal forest. J. Geophys. Res. 102, 795–804.
  • Wirth, Ch., Schulze, E-.D., Schulze, W., von Stfinzer-Karbe, W., Zeigler, W., Milyukova, I. M., Sogatchev, A, Varlagin, A. B., Panfyorov, M., Grigoriev, S., Kusnetova, V., Siry, M., Hardes, G., Zimmermann, R. and Vygodskoya, N. N. 1999. Above-ground biomass and structure of pris-tine Siberian Scots pine forests as controlled by competi-tion and fire. Ocecol. 121, 66–80.
  • Wirth, Ch., Schulze, E.-D., Liihker, B., Grigoriev, S., Siry, M., Hardes, G., Zeigler, W., Backor, M., Bauer, G. and Vygodskaya, N. N. 2002a. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil, in press.
  • Wirth, Ch., Schulze, E.-D., Kusznetova, V., Hardes, G., Siry, M., Schulze, B. and Vygodskaya, N. N. 2002b. Above-ground net primary productivity of Siberian Scots pine forest - Magnitude and causes of variability at different time scales. Tree Physiol. in press.
  • Yanagihara, Y., Koike, T., Satoh, F., Shibata, H., Mori, S., Matsuura, Y., Zyryanova, 0. A., Prokushlcin, A. S., Prokushlcin, S. G. and Abaimov, A. P. 2000. Soil respira-tion on north- and south-facing slopes in a central Siberian larch forest under changing environmental conditions. In: Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999 (ed. G. Inoue and A. Takenalca). Tsukuba, Japan, 176-183.
  • Zimov, S. A., Semiletov, I. P., Davidov, S. P., Voropaev, Y. V., Prosyannikov, C. F., Wong, S. C. and Chan, Y. H. 1993. Wintertime CO2 emission from soil of northeastern Siberia. Arctic 46, 197–204.
  • Zvyagintsev, D. G. 1991. Methods of soil microbiology and biochemistry.MSU, Moscow, 303 pp. (in Russian).