238
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements

, , , , , , , , , & show all
Pages 655-676 | Received 02 Jul 2001, Accepted 25 Apr 2002, Published online: 15 Dec 2016

References

  • Arneth, A., Lloyd, J., S'antrulcová, H., Bird, M., Grigoryev, S., Kalaschnikov, B. Y. N., Gleixner, G. and Schulze, E.-D. 2002. Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concen-tration. Global Biogeochem. Cycles (in press).
  • Ayotte, K. W., Finnigan, J. J. and Raupach, M. R. 1999. A second-order closure for neutrally stratified vegetative canopy flows. Boundary Layer Meteorol. 90, 189–216.
  • Baldocchi, D. D. 1992. A Lagrangian random-walk model for simulating water vapour, CO2 and sensible heat flux densities and scaler frofiles over and within a soyabean canopy. Boundary Layer Meteorol. 61, 113–144.
  • Ball, J. T., Woodrow, I. E. and Berry, J. A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research, vol. IV (ed. J. Biggens). Martinus Nijhoff Publishers, Dordrecht, 221-224.
  • Bergh, J., McMutrie, R. E. and Linder, S. 1998. Climatic factors controlling the productivity of Norway spruce: a model-based analysis. Forest Ecol. Management 110, 127–139.
  • Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr., A. R. and Long, S. P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253-259.
  • Cernusak, L. A. and Marshall, J. D. 2001. Responses of fo-liar 313C, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monti cola branches. Tree Physiol. 21, 1215–1222.
  • Corrsin, S. 1963. Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbu-lence. J. Atmos. Sci. 20, 115–119.
  • Cowan, I. R. 1968. The interception and absorption of radi-ation in plant stands. J. Appl. Ecol. 5, 367–379.
  • Cowan, I. R. and Farquhar, G. D. 1977. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 31, 471–505.
  • de Pury, D. G. G. 1995. Scaling photosynthesis and water use from leaves to paddocks. PhD Thesis, Australian National University, Canberra, 377 pp.
  • de Pury, D. G. G. and Farquhar, G. D. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell Environ. 20, 537–557.
  • Denmead, 0. T., Harper, L. A. and Sharpe, R. R. 2000. Iden-tifying sources and sinks of scalars in a corn canopy with inverse Lagrangian dispersion analysis I. Heat. Agric. For-est Meteorol. 104, 67-73.
  • Dolman, A. J. and Wallace, J. S. 1991. Lagrangian and K-theory approaches in modelling evaporation from sparse canopies. Q. J. R. Meteorol. Soc. 117, 1325–1340.
  • Enting, I. G. 1993. Inverse problems in atmospheric con-stituent studies DI: estimating errors in surface sources. Inverse Problems 9, 649–665.
  • Farquhar, G. D., von Caemmerer, S. and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90.
  • Farquhar, G. D., O'Leary, M. H. and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121-137.
  • Farquhar, G. D., Ehleringer, J. R. and Hubick, K. T. 1989. Car-bon isotope discrimination during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503-537.
  • Finnigan, J. J. and Leuning, L. 2000. Long term flux mea-surements - coordinate systems and averaging. Proc. Inter-national Workshop for Advanced Flux Network and Flux Evaluation. Centre for Global Environmental Research, National Institute for Environmental Studies, Japan, 51-56.
  • Goudriaan, J. 1977. Crop micrometeorology: a simulation study. Centre for Agricultural Publishing and Documenta-tion, Wageningen, 249 pp.
  • Gower, S. T. and Norman, J. M. 1991. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72, 1896–1900.
  • Gu, L., Shugart, H. H., Fuentes, J. D., Black, T. A. and Shewchuk, S. R. 1999. Micrometeorology, biophysical ex-changes and NEE decomposition in a two-story boreal for-est - development and test of an integrated model. Agric. Forest Meteorol. 94, 123-148.
  • Hari, P., Makela, A., Berninger, F. and Pohja, T. 1999. Field evidence for the optimality hyphothesis of gas exchange in plants. Aust. J. Plant Physiol. 26, 239-244.
  • Harper, L. A., Denmead, O. T. and Sharpe, R. R. 2000. Identi-fying sources and sinks of scalars in a corn canopy with in-verse Lagrangian dispersion analysis H. Ammonia. Agric. Forest Meteorol. 104, 75-83.
  • Huber, L., Laville, P. and Fuentes, J. D. 1999. Uncertain-ties in isoprene emissions from a mixed deciduous forest estimated using a canopy microclimate model. J. Appl. Meteorol. 38, 899–912.
  • Ishida, A., Nakano, T., Selcilcawa, S., Maruta, E. and Masuzawa, T. 2001. Diurnal changes in needle gas ex-change in alpine Pinus pumila during snow-melting and summer seasons. Ecol. Res. 16, 107–116.
  • Jones, H. G. 1992. Plants and microclimate (2nd edn). Cambridge University Press, Cambridge, 428 pp.
  • Kaimal, J. C. and Finnigan, J. J. 1994. Atmospheric bound-ary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp.
  • Kasibhatla, R, Heimann, M., Rayner, P., Mahowald, N., Prinn, R. G. and Hartley, D. E. (1922) Inverse methods in global biogeochemical cycles. American Geophysical Union, Washington, DC, 324 pp.
  • Katul, G., Oren, R., Ellsworth, D., Hsieh, C.-I., Phillips, N. and Lewin, K. 1997. A Lagrangian dispersion model for predicting CO2 sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand. J. Geophys. Res. 102, 9309–9321.
  • Katul, G. G., Leuning, R., Kim, J., Denmead, 0. T., Miyata, A. and Harazono, Y. 2001. Estimating CO2 source/sink distributions within a rice canopy using higher-order closure models. Boundary Layer Meteorol. 98, 103-125.
  • Keeling, C. D. 1961. The concentrations and isotopic abun-dances of atmospheric carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 24, 277–298.
  • Kelliher, F. M., Hollinger, D. Y., Schulze, E.-D., Vygodskaya, N. N., Byers, J. N., Hunt, J. E., McSeveny, T. M., Milukova, I., Sogatchev, A., Varlargin, A., Ziegler, W., Arneth, A. and Bauer, G. 1997. Evaporation from an eastern Siberian larch forest. Agric. For. Meteorol. 85, 135-147.
  • Kelliher, F. M., Lloyd, J., Arneth, A., Byers, J. N., McSev-eny, T. M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlagin, A., Ziegler, W., Bauer, G. and Schulze, E.-D. 1998. Evaporation from a central Siberian pine forest. J. Hydrol. 205, 279-296.
  • Kellomäki, S. and Wang, K.-Y. 2000a. Short-term envi-ronmental controls on carbon dioxide flux in a boreal coniferous forest: model computation compared with mea-surements by eddy covariance. Ecological Modelling 128, 63–88.
  • Kellomäki, S. and Wang, K.-Y. 2000b. Modelling and mea-suring transpiration from Scots pine with increased tem-perature and carbon dioxide enrichment. Ann. Bot. 85, 263–278.
  • Körner, C., Farquhar, G. D. and Wong, S.-C. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88, 30–40.
  • Leclerc, M. Y., Beissner, K. C. Shaw, R. H., den Hartog, G. and Neumann, H. H. 1990. The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J. Appl. Meteorol. 29, 916–933.
  • Lee, X. 1998. On micrometeorological observations of surface-air exchange over tall vegetation. Agric. Forest Meteorol. 91, 39–49.
  • Leuning, R. 1997. Scaling to a common temperature im-proves the correlation between the photosynthesis param-eters .1 max andJ. Exp. Bot. 48, 345–347.
  • Leuning, R. 2000. Estimation of scalar source/sink distribu-tions in plant canopies using Lagrangian dispersion anal-ysis: corrections for atmospheric stability and comparison with a multilayer canopy model. Boundary Layer Meteo-rol. 96, 293–314.
  • Leuning, R., Denmead, 0. T., Miyata, A. and Kim, J. 2000. Source/sink distributions of heat, water vapour, carbon dioxide and methane in a rice canopy estimated using La-grangian dispersion analysis. Agric. Forest Meteorol. 104, 233-249.
  • Lloyd, J. and Farquhar, G. D. 1994. “C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99, 201-215.
  • Lloyd, J Shibistova, O., Tchebalcova, N., Kolle, O., Arneth, A., Zolotoulchine, D., Styles, J. M. and Schulze, E.-D. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B, (this issue).
  • McNaughton, K. G. and van den Hurk, B. J. J. M. 1995. A `Lagrangian' revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy. Boundary Layer Meteorol. 74, 261-288.
  • Nikolov, N. T., Massman, W. J. and Schoettle, A. W. 1995. Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants. Ecol. Model. 80, 205-235.
  • Panek, J. A. 1996. Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA. Tree Physiol. 16, 747-755.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flan-nery, B. P. 1992. Numerical recipes in Fortran 77: the art of scientific computing. (2nd edn, vol. 1. of Fortran Numer-ical Recipies)Cambridge University Press, Cambridge, 933 pp.
  • Price, D. T. and Black, T. A. 1990. Effects of short-term vari-ation in weather on diurnal canopy CO2 flux and evapo-transpiration of a juvenile Douglas-fir stand. Agric. Forest Meteorol. 50, 139–158.
  • Raupach, M. R. 1987. A Lagrangian analysis of scalar trans-fer in vegetation canopies. Quart. J. R. Meteorol. Soc. 113, 107–120.
  • Raupach, M. R. 1988. Canopy transport processes. In: Flow and transport in the natural environment: advances and applications (eds. W. L. Steffen and 0. T. Denmead). Springer-Verlag, Berlin, 95–127.
  • Raupach, M. R. 1989a. A practical Lagrangian method for re-lating scalar concentrations to source distributions in veg-etation canopies. Quart. J. R. Meteorol. Soc. 115, 609–632.
  • Raupach, M. R. 1989b. Applying Lagrangian fluid mechan-ics to infer scalar source distributions from concentration profiles in plant canopies. Agric. Forest Meteorol. 47, 85–108.
  • Raupach, M. R. 2001a. Inferring biogeochemical sources and sinks from atmospheric concentrations: general consider-ations and applications in vegetation canopies. In: Global biogeochemical cycles in the climate system (eds. E.-D. Schulze, M. Heimann, S. Harrison, E. Holland, J. Lloyd and I. C. Prentice). Academic Press, New York.
  • Raupach, M. R. 2001b. Combination theory and equilibrium evaporation. Quart. J. R. Meteorol. Soc. 127, 1149-1181.
  • Röser, C., Montagnini, L., Kolle, O., Meroni, M., Mollicone, D., Papale, D., Marchesini, L. B., Federici, S., Schulze, E.-D. and Valentini, R. 2002. CO2-exchange rates of three differently structured stands in Central Siberia during one vegetation period. Tellus 54B (this issue).
  • Ross, J. 1981. The radiation regime and architecture of plant stands. Dr W. Junk Publishers, The Hague, 391 pp.
  • Ryan, M. G. and Yoder, B. J. 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242.
  • Schaberg, P. G., Wilkinson, R. C., Shane, J. B., Donnelly, J. R. and Cali, P. F. 1995. Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiol. 15, 345-350.
  • Schulze, E.-D., Lloyd, J., Kelliher, F. M., Wirth, Ch., Rebmann, C., Liihker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M., Tchebakova, N. and Vygodskaya, N. N. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol. 6, 703-722.
  • Shaw, R. H., den Hartog, G. and Neumann, H. H. 1988. In-fluence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Boundary Layer Meteorol. 45, 391–409.
  • Siqueira, M., Lai, C.-T. and Katul, G. 2000. Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models. J. Geo-phys. Res. 105, 29475–29488.
  • Styles, J. M. 2002. Inverse modelling of trace gas exchange at canopy and regional scales. PhD Thesis, Australian Na-tional University, Canberra, 248 pp.
  • Thomson, D. J. 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529–556.
  • van den Hurk, B. J. J. M. and McNaughton, K. G. 1995. Implementation of near-field dispersion in a simple two-layer surface resistance model. J. Hydrol. 166, 293–311.
  • Walcroft, A. S., Whitehead, D., Silvester, W. B. and Kelliher, EM. 1997. The response of photosynthetic model param-eters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell Environ. 20, 1338-1348.
  • Werner, R. A. and Brand, W. A. 2001. Referencing strate-gies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519.
  • Wullschleger, S. D. 1993. Biochemical limitations to car-bon assimilation in C3 plants — a retrospective analysis of the AlCi curves from 109 species. J. Exp. Bot. 44, 907–920.
  • Zelawslci, W. and Kucharska, J. 1967. Winter depression of photosynthetic activity in seedlings of Scots pine (Pinus sylvestris L.). Photosynthetica 1, 207–213.