197
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Methane consumption and soil respiration by a birch forest soil in West Siberia

, &
Pages 223-229 | Received 01 Sep 2003, Accepted 09 Feb 2004, Published online: 18 Jan 2017

References

  • Alexeyev, V. A., Stakanov, V. D. and Korotkov, I. A. 1996. The forest resources of Russia. In: Carbon Storage in Forests and Peatlands of Russia (eds V. A. Alexeyev and R. A. Birdsey), USDA Forest Service, Washington, DC, 3–11
  • Boone, R. D., Nadelhoffer, K. J., Canary, J. D. and Kaye, J. P. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396, 570–572.
  • Borken, W., Brumme, R. and Xu, Y.-J. 2000. Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest. J. Geophys. Res. 105D, 7079–7088.
  • Born, M., Diu, H. and Levin, I. 1990. Methane consumption in aerated soils of the temperate zone. Tellus 42B, 2–8.
  • Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Mellilo, J. M. and Barrison, J. B. 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can. J. Forest Res. 23, 1402–1407.
  • Brumme, R. and Borken, W. 1999. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Global Biogeochem. Cycles 13,493–501.
  • Castro, M. S., Melillo, J. M., Steudler, P. A. and Chapman, J. W. 1994. Soil moisture as a predictor of methane uptake by temperate forest soils. Can. J. Forest Res. 24, 1805–1810.
  • Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D. and Bowden, R. D. 1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem. Cycles 9, 1–10.
  • Crill, P.M. 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem. Cycles 5, 319–334.
  • Czepiel, P.M., Crill, P.M. and Harriss, R. C. 1995. Environmental factors influencing the variability of methane oxidation in temperate zone soils. J. Geophys. Res. 100D, 9359–9364.
  • Davidson, E. A., Belk, E. and Boone, R. D. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol. 4, 217–227.
  • Davidson, E. A., Verchot, L. V., Cattânio, J. H., Ackerman, I. L. and Carvalho, J. E. M. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48, 53–69.
  • Dön, H. and Miinnich, K. O. 1987. Annual variation in soil respiration in selected areas of the temperate zone. Tellus 39B, 114–121.
  • Dön, H., Katruff, L. and Levin, I. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26, 697–713.
  • Eguchi, S., Sakata, T., Hatano, R. and Sakuma, T. 1997. Daily changes of CO2 efflux from the soil of a deciduous broad-leaved forest and its significance as a CO2 source for vegetation. Japan. J. Soil Sci. Plant Nutr. 68, 138-147 (in Japanese with English summary).
  • Grant, R. E and Rochette, P. 1994. Soil microbial respiration at different water potentials and temperatures: theory and mathematical modeling. Soil Sci. Soc. Am. J. 58, 1681–1690.
  • Gulledge, J. and Schimel, J. P. 2000. Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems 3, 269–282.
  • Hinckley, T. M. and Bruckerhoff, D. N. 1975. The effects of drought on water relations and stem shrinkage of Quercus alba. Can. J. Bot. 53, 62–72.
  • Inoue, G., Ohnishi, H. and Matsui, M. 1998. Application of solid state gas-sensors of CH4 and CO2 to environment research. In: Proc. 6th Symposium of Joint Siberian Permafrost Studies between Japan and Russia in 1997 (eds S. Mori, Y. Kanazawa, Y. Matsuura, G. Inoue). Forestry and Forest Products Research Institute, Tsukuba, 201–206
  • Keith, H., Jacobsen, K. L. and Raison, R. J. 1997. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190, 127–141.
  • Koschorreck, M. and Conrad, R. 1993. Oxidation of atmospheric methane in soil: measurements in the field, in soil cores and in soil samples. Global Biogeochem. Cycles 7, 109–121.
  • Lapshina, E. D., Mouldiyarov, E. Ya. and Vasiliev, S. V. 2001. Analyses of key area studies. In: Carbon Storage and Atmospheric Exchange by West Siberian Peatlands (eds W. Bleuten and E. D. Lapshina). Utrecht University, Utrecht, 23–42.
  • Lessard, R., Rochette, P., Topp, E., Pattey, E., Desjardins, R. L. and Beaumont G. 1994. Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest soils. Can. J. Soil Sci. 74, 139–146.
  • McLain, J. E. T., Kepler, T. B. and Ahmann, D. M. 2002. Below-ground factors mediating changes in methane consumption in a forest soil under elevated CO2. Global Biogeochem. Cycles 16 (3), 1050, 10.1029/2001GB001439.
  • Nakane, K., Yamamoto, M. and Tsubota, H. 1983. Estimation of root respiration rate in a mature forest ecosystem. Japan. J. Ecol. 33, 397–408.
  • Nakano, T., Sawamoto, T., Morishia, T., Inoue, G. and Hatano, R. 2004. A comparison of regression method for estimating soil—atmosphere diffusion gas fluxes by a closed chamber technique. Soil Biol. Biochem. 36, 107–113.
  • Osozawa, S. 1987. Measurement of soil-gas diffusion coefficient for soil diagnosis. Soil Phys. Cond. Plant Growth Japan. 58, 528-535 (in Japanese with English summary).
  • Post, W. M., Gu, L. and King, A. W. 2003. Rapid decomposition of labile soil organic matter inputs obscures sensitivity of heterotrophic respiration to temperature: a model analysis. Eos. Trans. AGU, 84 (46) (Fall Meet. Suppl.), abstract B12E-05.
  • Potter, C. S., Davidson, E. A. and Verchot, L. V. 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32, 2219–2246.
  • Priemé, A. and Christensen, S. 1997. Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol. Biochem. 29, 1165–1172.
  • Priemé, A., Christensen, S., Galle, B., Klemedtsson, L. and Griffith, D. W. T. 1996. Spatial variability of CH4 uptake in a Danish forest soil and its relation to different measurement techniques. Atmos. Environ. 30, 1375–1379.
  • Rayment, M. B. and Jarvis, P. G. 1997. An improved open chamber system for measuring soil CO2 effluxes in the field. J. Geophys. Res. 102D, 28779–28784.
  • Savage, K., Moore, T. R. and Crill, P. M. 1997. Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils. J. Geophys. Res. 102D, 29279–29288.
  • Sawamoto, T., Hatano, R., Yajima, T., Takahashi, K. and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci. Plant Nutr. 46, 31–42.
  • Skopp, J., Jawson, M. D. and Doran, J. W. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54, 1619–1625.
  • Steudler, P. A., Bowden, R. D., Melillo, J. M. and Aber, J. D. 1989. Influence if nitrogen fertilization on methane uptake in temperate forest soils. Nature 341, 314–316.
  • Striegl, R. G. and Wickland, K. P. 1998. Effects of a clear-cut harvest on soil respiration in a jack pine—lichen woodland. Can. J. Forest Res. 357, 145–147.
  • Yefremov, S. P. and Yefremova, T. T. 2001. Present stocks of peat and organic carbon in bog ecosystems of West Siberia. In: Carbon Storage and Atmospheric Exchange by West Siberian Peatlands (eds. W. Bleuten and E. D. Lapshina). Utrecht University, Utrecht, 73–78.
  • Whalen, S. C. and Reeburgh, W. S. 1996. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol. Biochem. 28, 1271–1281.
  • Zar, J. H. 1999. Biostatistical Analysis, 4th edn, Prentice-Hall, Upper Saddle River, NJ.