111
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Importance of submicron surface-active organic aerosols for pristine Arctic clouds

&
Pages 261-268 | Received 01 Oct 2004, Accepted 14 Jan 2005, Published online: 18 Jan 2017

References

  • Berner, A., Liirzer, C., Pohl, F., Preining, O. and Wagner, P. 1979. The size distribution of the urban aerosol in Vienna. Sci. Total Environ. 13, 245–261.
  • Bigg, E. K. and Leck, C. 2001a. Cloud-active particles over the central Arctic Ocean. J. Geophys. Res. 106, 32 155-32 166.
  • Bigg, E. K. and Leck, C. 2001b. Properties of the aerosol over the central Arctic Ocean. J. Geophys. Res. 106, 32 101-32 109.
  • Bigg, E. K., Leck, C. and Tranvilc, L. 2004. Particulates of the surface microlayer of open water in the central Arctic Ocean in summer. Marine Chem. 91, 131–141.
  • Birmili, W., Wiedensohler, A., Heintzenberg, J. and Lehmann, K. 2001. Atmospheric particle number size distribution in Central Europe: sta-tistical relations to air masses and meteorology. J. Geophys. Res. 106, 32 005-32 018.
  • Broekhuizen, K., Kumar, P. P. and Abbatt, J. P. D. 2004. Partially soluble organics as cloud condensation nuclei: role of trace soluble and surface active species. Geophys. Res. Lett. 31, 10.1029/2003GL018203.
  • Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P. H. and co-author 1996. Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn. Tellus 48B, 197–212
  • Facchini, M. C., Mircea, M., Fuzzi, S. and Charlson, R. J. 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257–259.
  • Heintzenberg, J. and Leck, C. 1994. Seasonal variation of the atmo-spheric aerosol near the top of the marine boundary layer over Spits-bergen related to the Arctic sulphur cycle. Tellus 46B, 52–67.
  • Hillamo, R., Kerminen, V.-M., Aurela, M., Mäkelä, T., Maenhaut, W. and co-author 2001. Modal structure of chemical mass size distributions in the high arctic aerosol. J. Geophys. Res. 106, 27555–27571.
  • Kerminen, V.-M. and Leck, C. 2001. Sulfur chemistry over the central Arctic Ocean during the summer: gas-to-particle transformation. J. Geophys. Res. 106, 32 087-32 099.
  • Kumar, P. R, Broekhuizen, K. and Abbatt, J. P. D. 2003. Organic acids as cloud condensation nuclei: laboratory studies of highly soluble and insoluble species. Atmos. Chem. Phys. 3, 509–520.
  • Leck, C. and Bigg, E. K. 1999. Aerosol production over remote marine areas-a new route. Geophys. Res. Lett. 26, 3577–3580.
  • Leck, C. and Bigg, K. 2005. Biogenic particles over the central Arctic Ocean. Tellus in press.
  • Leck, C., Nilsson, E. D., Bigg, E. K. and Bäcklin, L. 2001. Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-96): an overview of scientific goals, experimental approach, and instruments. J. Geo-phys. Res. 106, 32 051-32 067.
  • Leck, C., Norman, M., Bigg, K. and Hillamo, R. 2002. Chemical com-position and sources of the high Arctic aerosol relevant for cloud formation. J. Geophys. Res. 107, 10.1029/2001JD001463.
  • Leck, C. and Persson, C. 1996a. The central Arctic Ocean as a source of dimethyl sulfide: seasonal variability in relation to biological activity. Tellus 48B, 156–177.
  • Leck, C. and Persson, C. 1996b. Seasonal and short-term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the arctic marine boundary layer, during summer and autumn. Tellus 48B, 272–299.
  • Lohmann, U., Broekhuizen, K., Leaitch, R., Shantz, N. and Abbatt, J. 2004. How efficient is cloud droplet formation of organic aerosols? Geophys. Res. Lett. 31, 10.1029/2003GL018999.
  • Lohmann, U. and Lesins, G. 2002. Stronger constraints on the anthro-pogenic indirect aerosol effect. Science 298, 1012–1016.
  • Narukawa, M., Kawamura, K., Li, S.-M. and Bottenheim, J. W. 2002. Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmos. Environ. 36, 2491–2499.
  • Nilsson, E. D. 1996. Planetary boundary layer structure and air mass transport during the International Arctic Ocean Expedition 1991. Tellus 48B, 178–196.
  • Phinney, L., Lohmann, U. and Leaitch, W. R. 2003. Limitations of using an equilibrium approximation in an aerosol activation parameterisa-tion. J. Geophys. Res. 108, 10.1029/2002J1)002391.
  • Pruppacher, H. R. and Klett, J. D. 1997. Microphysics of Clouds and Precipitation. Kluwer Academic, Norwell, MA.
  • Russell, L., Maria, S. F. and Myneni, C. B. 2002. Mapping or-ganic coatings on atmospheric particles. Geophys. Res. Lett. 29, 10.1029/2002GL014874.
  • Seinfeld, J. H. and Pandis, S. N. 1997. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. Wiley, New York.
  • Shantz, N. C., Leaitch, W. R. and Caffrey, P. 2003. Effect of organics of low solubility on the growth rate of cloud droplets. J. Geophys. Res. 108, 10.1029/2002JD002540.
  • Shulman, M. L. 1995. Influence of Atmospheric Organic Compounds on Cloud Microphysics. PhD thesis. University of Washington, Seattle, WA.
  • Sorjamaa, R., Raatilcainen, T. and Laalcsonen, A. 2004. The role of sur-factants in Köhler theory reconsidered. Atmos. Chem. Phys. Discuss. 4,2781–2804.
  • Tang, I. N. 1997. Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J. Geophys. Res. 102, 1883–1893.
  • Tang, I. N. and Munkelwitz, H. R. 1994. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99, 18 801-18 808.
  • Tang, I. N., Tridico, A. and Fung, K. H. 1997. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. 102, 23269-23 275.
  • Zhou, J., Swietlicici, E., Berg, O. H., Aalto, P. P., Hämeri, K. and co-authors 2001. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer. J. Geophys. Res. 106, 32 111–32123.