594
Views
14
CrossRef citations to date
0
Altmetric
Original Research Articles

Impact of aerosol on post-frontal convective clouds over Germany

, , , &
Article: 22528 | Received 05 Aug 2013, Accepted 03 Jun 2014, Published online: 02 Jul 2014

References

  • Athanasopoulou E. , Vogel H. , Vogel B. , Tsimpidi A. , Pandis S. , co-authors . Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign. Atmos. Chem. Phys. 2013; 13(2): 625–645.
  • Baldauf M. , Seifert A. , Förstner J. , Majewski D. , Raschendorfer M. , co-authors . Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon. Weather Rev. 2011; 139(12): 3887–3905.
  • Bangert M. , Kottmeier C. , Vogel B. , Vogel H . Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model. Atmos. Chem. Phys. 2011; 11(9): 4411–4423.
  • Bangert M. , Nenes A. , Vogel B. , Vogel H. , Barahona D. , co-authors . Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 2012; 12(9): 4045–4063.
  • Barahona D. , West R. E. L. , Stier P. , Romakkaniemi S. , Kokkola H. , Nenes A . Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations. Atmos. Chem. Phys. 2010; 10(5): 2467–2473.
  • EEA. Technical Report, European Environment Agency, Copenhagen. 2012. Online at: http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database .
  • Ekman A. , Wang C. , Wilson J. , Ström J . Explicit simulations of aerosol physics in a cloud-resolving model: a sensitivity study based on an observed convective cloud. Atmos. Chem. Phys. 2004; 4(3): 773–791.
  • Ekman A. M. , Engström A. , Söderberg A . Impact of two-way aerosol-cloud interaction and changes in aerosol size distribution on simulated aerosol-induced deep convective cloud sensitivity. J. Atmos. Sci. 2011; 68(4): 685–698.
  • Flossmann A. I. , Wobrock W . A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modelling. Atmos. Res. 2010; 97(4): 478–497.
  • Fountoukis C. , Nenes A . Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res.-Atmos. 2005; 110(D11): D11212.
  • Igel A. L. , van den Heever S. C. , Naud C. M. , Saleeby S. M. , Posselt D. J . Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci. 2013; 70(6): 1768–1783.
  • IPCC. Stocker T. F. , Qin D. , Plattner G.-K. , Tignor M. , Allen S. K. , co-authors . Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Jiang H. , Feingold G. , Koren I . Effect of aerosol on trade cumulus cloud morphology. J. Geophys. Res.-Atmos. 2009; 114(D11): D11209.
  • Jiang H. , Xue H. , Teller A. , Feingold G. , Levin Z . Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett. 2006; 33(14): L14806.
  • Khain A. P. , BenMoshe N. , Pokrovsky A . Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J. Atmos. Sci. 2008; 65(6): 1721–1748.
  • Klok E. J. , Klein Tank A. M. G . Updated and extended European dataset of daily climate observations. Int. J. Clim. 2009; 29(8): 1182–1191.
  • Knote C. , Brunner D. , Vogel H. , Allan J. , Asmi A. , co-authors . Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART. Geosci. Model Dev. 2011; 4(4): 1077–1102.
  • Levin Z. , Cotton W. R . Aerosol Pollution Impact on Precipitation: A Scientific Review. 2009; Springer: Dordrecht. 386.
  • Lorenz E. N . The predictability of a flow which possesses many scales of motion. Tellus. 1969; 21(3): 289–307.
  • Lundgren K. , Vogel B. , Vogel H. , Kottmeier C . Direct radiative effects of sea salt for the Mediterranean region under conditions of low to moderate wind speeds. J. Geophys. Res.-Atmos. 2013; 118(4): 1906–1923.
  • Morales R. , Nenes A . Characteristic updrafts for computing distribution-averaged cloud droplet number, autoconversion rate and effective radius. J. Geophys. Res. 2010; 115: D18220.
  • Morrison H . On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys. 2012; 12(16): 7689–7705.
  • Morrison H. , Grabowski W . Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys. 2011; 11(20): 10503–10523.
  • Noppel H. , Pokrovsky A. , Lynn B. , Khain A. , Beheng K . A spatial shift of precipitation from the sea to the land caused by introducing submicron soluble aerosols: numerical modeling. J. Geophys. Res.-Atmos. 2010; 115(D18): D18212.
  • Pierce J. R. , Adams P. J . Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res.-Atmos. 2006; 111(D6): D06203.
  • Riemer N. , Vogel H. , Vogel B. , Fiedler F . Modeling aerosols on the mesoscale-gamma: treatment of soot aerosol and its radiative effects. J. Geophys. Res.-Atmos. 2003; 108(D19): 4601.
  • Rosenfeld D. , Lohmann U. , Raga G. B. , O'Dowd C. D. , Kulmala M. , co-authors . Flood or drought: how do aerosols affect precipitation?. Science. 2008; 321: 1309–1313. [PubMed Abstract].
  • Saleeby S. M. , van den Heever S. C . Developments in the CSU-RAMS aerosol model: emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteorol. Clim. 2013; 52(12): 2601–2622.
  • Segal Y. , Khain A . Dependence of droplet concentration on aerosol conditions in different cloud types: application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res.-Atmos. 2006; 111(D15): D15204.
  • Seifert A. , Beheng K . A double-moment parameterization for simulating autoconversion, accretion and self collection. Atmos. Res. 2001; 59: 265–281.
  • Seifert A. , Beheng K . A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description. Meteorol. Atmos. Phys. 2006a; 92(1–2): 45–66.
  • Seifert A. , Beheng K . A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: maritime vs. continental deep convective storms. Meteorol. Atmos. Phys. 2006b; 92(1–2): 67–82.
  • Seifert A. , Köhler C. , Beheng K. D . Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys. 2012; 12(7): 709–725.
  • Solomos S. , Kallos G. , Kushta J. , Astitha M. , Tremback C. , co-authors . An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys. 2011; 11(2): 873–892.
  • Stanelle T. , Vogel B. , Vogel H. , Bäumer D. , Kottmeier C . Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos. Chem. Phys. 2010; 10(22): 10771–10788.
  • Steinbrecher R. , Smiatek G. , Koeble R. , Seufert G. , Theloke J. , co-authors . Intra- and inter-annual variability of VOC emissions from natural and semi-natural vegetation in Europe and neighbouring countries. Atmos. Environ. 2009; 43(7): 1380–1391.
  • Stevens B. , Feingold G . Untangling aerosol effects on clouds and precipitation in a buffered system. Nature. 2009; 461: 607–613. [PubMed Abstract].
  • Stockwell W. R. , Middleton P. , Chang J. S. , Tang X. Y . The 2nd generation regional acid deposition model chemical mechanism for regional air-quality modeling. J. Geophys. Res.-Atmos. 1990; 95(D10): 16343–16367.
  • Tao W.-K. , Chen J.-P. , Li Z. , Wang C. , Zhang C . Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012; 50(2): RG2001.
  • van den Heever S. C. , Cotton W. R . Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Clim. 2007; 46(6): 828–850.
  • van den Heever S. C. , Stephens G. L. , Wood N. B . Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci. 2011; 68(4): 699–718.
  • van der Gon D. H. , Visschedijk A. , van der Brugh H. , Dröge R . A high resolution European emission data base for the year 2005, a Contribution to UBA-Projekt PAREST: Particle Reduction Strategies. 2010; Utrecht, The Netherlands: TNO. Technical Report. TNO-report TNO-034-UT-2010-01895 RPTML.
  • Vogel B. , Hoose C. , Vogel H. , Kottmeier C . A model of dust transport applied to the Dead Sea Area. Meteorol. Z. 2006; 15(6): 611–624.
  • Vogel B. , Vogel H. , Baeumer D. , Bangert M. , Lundgren K. , co-authors . The comprehensive model system COSMO-ART – radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys. 2009; 9(22): 8661–8680.
  • Wang H. , Auligné T. , Morrison H . Impact of microphysics scheme complexity on the propagation of initial perturbations. Mon. Weather Rev. 2012; 140(7): 2287–2296.
  • Weusthoff T. , Hauf T . The life cycle of convective-shower cells under post-frontal conditions. Q. J. Roy. Meteorol. Soc. 2008a; 134(633, B): 841–857.
  • Weusthoff T. , Hauf T . Basic characteristics of post-frontal shower precipitation rates. Meteorol. Z. 2008b; 17(6): 793–805.
  • Wood R . Stratocumulus clouds. Mon. Weather Rev. 2012; 140(8): 2373–2423.
  • Xue H. , Feingold G. , Stevens B . Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci. 2008; 65(2): 392–406.