1,563
Views
17
CrossRef citations to date
0
Altmetric
Original Research Articles

Sources of variation in simulated ecosystem carbon storage capacity from the 5th Climate Model Intercomparison Project (CMIP5)

, , &
Article: 22568 | Received 08 Aug 2013, Accepted 20 Mar 2014, Published online: 22 May 2014

References

  • Ahlström A , Smith B , Lindström J , Rummukainen M , Uvo C. B . GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance. Biogeosciences. 2013; 10: 1517–1528.
  • Arora V. K , Boer G. J . A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Chang. Biol. 2005; 11: 39–59.
  • Arora V. K , Scinocca J. F , Boer G. J , Christian J. R , Denman K. L , co-authors . Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 2011; 38: 05805.
  • Atkin O. K , Atkinson L. J , Fisher R. A , Campbell C. D , Zaragoza-Castells J , co-authors . Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob. Chang. Biol. 2008; 14: 2709–2726.
  • Barrett D. J . Steady state turnover time of carbon in the Australian terrestrial biosphere. Glob. Biogeochem. Cycles. 2002; 16(4): 1108.
  • Bowman D. M, Balch J. K, Artaxo P, Bond W. J, Carlson J. M, co-authors. Fire in the Earth system. Science. 2009; 324: 481–484. [PubMed Abstract].
  • Canadell J. G, Le Quere C, Raupach M. R, Field C. B, Buitenhuis E. T, co-authors. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 18866–18870. [PubMed Abstract] [PubMed CentralFull Text].
  • Carbone M. S, Trumbore S. E. Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol. 2007; 176: 124–135. [PubMed Abstract].
  • Chambers J. Q, Fisher J. I, Zeng H, Chapman E. L, Baker D. B, co-authors. Hurricane Katrina's carbon footprint on U.S. Gulf Coast forests. Science. 2007; 318: 1107. [PubMed Abstract].
  • Ciais P , Friedlingstein P , Schimel D. S , Tans P. P . A global calculation of the delta C-13 of soil respired carbon: implications for the biospheric uptake of anthropogenic CO2 . Glob. Biogeochem. Cycles. 1999; 13: 519–530.
  • Cox P. M , Betts R. A , Collins M , Harris P. P , Huntingford C , co-authors . Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theor. Appl. Climatol. 2004; 78: 137–156.
  • Cramer W , Field C. B . Comparing global models of terrestrial net primary productivity (NPP): introduction. Glob. Chang. Biol. 1999; 5: Iii–Iv.
  • Cramer W , Kicklighter D. W , Bondeau A , Moore B , Churkina G , co-authors . Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Chang. Biol. 1999; 5: 1–15.
  • Davidson E. A, Janssens I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006; 440: 165–173. [PubMed Abstract].
  • Derrien D , Amelung W . Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur. J. Soil Sci. 2011; 62: 237–252.
  • Dungait J. A. J , Hopkins D. W , Gregory A. S , Whitmore A. P . Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 2012; 18: 1781–1796.
  • Emanuel W. R , Killough G. G , Post W. M , Shugart H. H . Modeling terrestrial ecosystems in the global carbon-cycle with shifts in carbon storage capacity by land-use change. Ecology. 1984; 65: 970–983.
  • FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (version 1.10). 2012; Rome, Italy and IIASA, Laxenburg, Austria: FAO.
  • Friedlingstein P , Cox P , Betts R , Bopp L , Von Bloh W , co-authors . Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 2006; 19: 3337–3353.
  • Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008; 451: 289–292. [PubMed Abstract].
  • Hiederer R , Köchy M . Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. EUR 25225 EN. 2011; Publications Office of the European Union. 79 pp.
  • Hopkins F. M, Torn M. S, Trumbore S. E. Warming accelerates decomposition of decades-old carbon in forest soils. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: E1753–1761. [PubMed Abstract] [PubMed CentralFull Text].
  • Johnston M. H , Homann P. S , Engstrom J. K , Grigal D. F . Changes in ecosystem carbon storage over 40 years on an old-field forest landscape in east-central Minnesota. Forest Ecol. Manag. 1996; 83: 17–26.
  • Kane E. S , Vogel J. G . Patterns of total ecosystem carbon storage with changes in soil temperature in Boreal Black Spruce forests. Ecosystems. 2009; 12: 322–335.
  • Kicklighter D. W , Bondeau A , Schloss A. L , Kaduk J , McGuire A. D , co-authors . Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Glob. Chang. Biol. 1999; 5: 16–24.
  • Knorr W, Prentice I. C, House J. I, Holland E. A. Long-term sensitivity of soil carbon turnover to warming. Nature. 2005; 433: 298–301. [PubMed Abstract].
  • Koven C. D, Ringeval B, Friedlingstein P, Ciais P, Cadule P, co-authors. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 14769–14774. [PubMed Abstract] [PubMed CentralFull Text].
  • Krinner G , Viovy N , de Noblet-Ducoudré N , Ogée J , Polcher J , co-authors . A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles. 2005; 19: GB1015.
  • Krishan G , Srivastav S. K , Kumar S , Saha S. K , Dadhwal V. K . Quantifying the underestimation of soil organic carbon by the Walkley and Black—examples from Himalayan and Central Indian soils. Curr. Sci. India. 2009; 96: 1133–1136.
  • Lales J. S , Lasco R. D , Geronimo I. Q . Carbon storage capacity of agricultural and grassland ecosystems in a geothermal block. Philippine Agr. Sci. 2001; 84: 8–18.
  • Lawrence D. M , Oleson K. W , Flanner M. G , Thornton P. E , Swenson S. C , co-authors . Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 2011; 3: 1942–2466.
  • Lawrence P. J , Chase T. N . Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences. 2007; 112: G01023.
  • Le Quere C , Raupach M. R , Canadell J. G , Marland G , Bopp L , co-authors . Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009; 2: 831–836.
  • Luo Y . Terrestrial carbon–cycle feedback to climate warming. Ann. Rev. Ecol. Evol. Syst. 2007; 38: 683–712.
  • Luo Y. Q , White L. W , Canadell J. G , DeLucia E. H , Ellsworth D. S , co-authors . Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Glob. Biogeochem. Cycles. 2003; 17(1): 1021.
  • Luo Y. Q , Wu L. H , Andrews J. A , White L , Matamala R , co-authors . Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecol. Monogr. 2001; 71: 357–376.
  • Mahecha M. D, Reichstein M, Carvalhais N, Lasslop G, Lange H, co-authors. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science. 2010; 329: 838–840. [PubMed Abstract].
  • Meyer R , Joos F , Esser G , Heimann M , Hooss G , co-authors . The substitution of high-resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate. Global Biogeochem. Cycles. 1999; 13: 785–802.
  • Mooney H , Canadell J , Chapin F., III , Ehleringer J , Körner C , co-authors . Ecosystem Physiology Responses to Global Change. 1999; Cambridge: Cambridge University Press. 141–189.
  • Parton W. J , Stewart J. W , Cole C. V . Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry. 1988; 5: 109–131.
  • Piao S, Luyssaert S, Ciais P, Janssens I. A, Chen A, co-authors. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology. 2010; 91: 652–661. [PubMed Abstract].
  • Pinsonneault A. J , Matthews H. D , Kothavala Z . Benchmarking climate–carbon model simulations against forest FACE data. Atmos. Ocean. 2011; 49: 41–50.
  • Prentice I. C , Bondeau A , Cramer W , Harrison S. P , Hickler T , co-authors . Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. Terrestrial Ecosystems in a Changing World. 2007; Springer, Berlin,: Heidelberg. 175–192. (eds. J. G. Canadell, D. E. Pataki and L..
  • Raich J. W , Schlesinger W. H . The global carbondioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B. 1992; 44: 81–99.
  • Randerson J. T , Thompson M. V , Field C. B . Linking C-13-based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth. Tellus. B. 1999; 51: 668–678.
  • Ruimy A , Dedieu G , Saugier B . TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Glob. Biogeochem. Cycles. 1996; 10: 269–285.
  • Sato H , Itoh A , Kohyama T . SEIB–DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol. Model. 2007; 200: 279–307.
  • Schmidt M. W. I, Torn M. S, Abiven S, Dittmar T, Guggenberger G, co-authors. Persistence of soil organic matter as an ecosystem property. Nature. 2011; 478: 49–56. [PubMed Abstract].
  • Schuur E. A. G, Vogel J. G, Crummer K. G, Lee H, Sickman J. O, co-authors. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature. 2009; 459: 556–559. [PubMed Abstract].
  • Solomon S , Qin D , Manning M , Marquis M , Averyt K , co-authors . Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007; Cambridge: Cambridge University Press.
  • Strassmann K. M , Joos F , Fischer G . Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B. 2008; 60: 583–603.
  • Tang J. W , Yin J. X , Qi J. F , Jepsen M. R , Lu X. T . Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna, SW China. J. Trop. Forest Sci. 2012; 24: 399–407.
  • Thompson M. V , Randerson J. T . Impulse response functions of terrestrial carbon cycle models: method and application. Glob. Chang. Biol. 1999; 5: 371–394.
  • Tian H. Q , Chen G. S , Zhang C , Liu M. L , Sun G , co-authors . Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern united states. Ecosystems. 2012; 15: 674–694.
  • Todd-Brown K. E. O , Randerson J. T , Post W. M , Hoffman F. M , Tarnocai C , co-authors . Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences. 2013; 10: 1717–1736.
  • van der Werf G. R , Randerson J. T , Giglio L , Collatz G , Mu M , co-authors . Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010; 10: 11707–11735.
  • Wang W , Dungan J , Hashimoto H , Michaelis A. R , Milesi C , co-authors . Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. primary production. Glob. Chang. Biol. 2011; 17: 1350–1366.
  • Weng E. S , Luo Y. Q , Wang W , Wang H , Hayes D. J , co-authors . Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research-Biogeosciences. 2012; 117: G3.
  • Watanabe S , Hajima T , Sudo K , Nagashima T , Takemura T , co-authors . MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011; 4: 845–872.
  • Xia J, Luo Y, Wang Y. P, Hararuk O. Traceable components of terrestrial carbon storage capacity in biogeochemical models. Glob. Chang. Biol. 2013; 19: 2104–2116. [PubMed Abstract].
  • Xu T , White L , Hui D. F , Luo Y. Q . Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles. 2006; 20: GB2007.
  • Zhang Y , Xu M , Chen H , Adams J . Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 2009; 18: 280–290.
  • Zhao M, Running S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science. 2010; 329: 940–943. [PubMed Abstract].
  • Zhou T , Luo Y. Q . Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Glob. Biogeochem. Cycles. 2008; 22: GB3032.
  • Zhou X , Zhou T , Luo Y . Uncertainties in carbon residence time and NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA: a Bayesian approach. Tellus B. 2012; 64: 17223.