592
Views
13
CrossRef citations to date
0
Altmetric
Original Research Articles

Variations of tropospheric methane over Japan during 1988–2010

, , , , , , & show all
Article: 23837 | Received 17 Jan 2014, Accepted 27 Apr 2014, Published online: 22 May 2014

References

  • Aoki S , Nakazawa T , Murayama S , Kawaguchi S . Measurements of atmospheric methane at the Japanese Antarctic Station. Syowa. Tellus B. 1992; 44: 273–281.
  • Assonov S. S , Brenninkmeijer C. A. M , Schuck T , Umezawa T . N2O as a tracer of mixing stratospheric and tropospheric air based on CARIBIC data with applications for CO2 . Atmos. Environ. 2013; 79: 769–779.
  • Aydin M , Verhulst K. R , Saltzman E. S , Battle M. O , Montzka S. A , co-authors . Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature. 2011; 476: 198–201.
  • Baker A. K , Schuck T. J , Brenninkmeijer C. A. M , Rauthe-Schöch A , Slemr F , co-authors . Estimating the contribution of monsoon-related biogenic production to methane emissions from South Asia using CARIBIC observations. Geophys. Res. Lett. 2012; 39
  • Bergamaschi P , Frankenberg C , Meirink J. F , Krol M , Villani M. G , co-authors . Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. J. Geophys. Res. 2009; 114
  • Bergamaschi P , Houweling S , Segers A , Krol M , Frankenberg C , co-authors . Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. 2013; 118: 7350–7369.
  • Blake D. R , Rowland F. S . World-wide increase in tropospheric methane, 1978–1983. J. Atmos. Chem. 1986; 4: 43–62.
  • Bloom A. A , Palmer P. I , Fraser A , Reay D. S , Frankenberg C . Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science. 2010; 327: 322–325.
  • Bousquet P , Ciais P , Miller J. B , Dlugokencky E. J , Hauglustaine D. A , co-authors . Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature. 2006; 443: 439–443.
  • Bousquet P , Ringeval B , Pison I , Dlugokencky E. J , Brunke E.-G , co-authors . Source attribution of the changes in atmospheric methane for 2006–2008. Atmos. Chem. Phys. 2011; 11: 3689–3700.
  • Cao M , Marshall S , Gregson K . Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J. Geophys. Res. 1996; 101(D9): 14399–14414.
  • Chen Y.-H , Prinn R. G . Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J. Geophys. Res. 2006; 111
  • Cunnold D. M , Steele L. P , Fraser P. J , Simmonds P. G , Prinn R. G , co-authors . In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. J. Geophys. Res. 2002; 107
  • Dlugokencky E. J , Bruhwiler L , White J. W. C , Emmons L. K , Novelli P. C , co-authors . Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009; 36
  • Dlugokencky E. J , Houweling S , Bruhwiler L , Masarie K. A , Lang P. M , co-authors . Atmospheric methane levels off: temporary pause or a new steady state?. Geophys. Res. Lett. 2003; 30(19):
  • Dlugokencky E. J , Masarie K. A , Lang P. M , Tans P. P , Steele L. P , co-authors . A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophys. Res. Lett. 1994; 21(1): 45–48.
  • Dlugokencky E. J, Masarie K. A, Tans P. P, Conway T. J, Xiong X. Is the amplitude of the methane seasonal cycle changing?. Atmos. Environ. 1997; 31(1):21–26. Online at: http://dx.doi.org/10.1016/S1352-2310(96)00174-4.
  • Dlugokencky E. J , Myers R. C , Lang P. M , Masarie K. A , Crotwell A. M , co-authors . Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J. Geophys. Res. 2005; 110: D18306.
  • Dlugokencky E. J , Nisbet E. G , Fisher R , Lowry D . Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. A. 2011; 369: 2058–2072.
  • Dlugokencky E. J , Steele P , Lang P. M , Masarie K. A . Atmospheric methane at Mauna Loa and Barrow observatories: presentation and analysis of in situ measurements. J. Geophys. Res. 1995; 100(D11): 23103–23113.
  • Dlugokencky E. J , Walter B. P , Masarie K. A , Lang P. M , Kasischke E. S . Measurements of an anomalous global methane increase during 1998. Geophys. Res. Lett. 2001; 28: 499–502.
  • Etheridge D. M , Steel L. O , Francey R. J , Langenfelds R. L . Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 1998; 103: 15979–15993.
  • Francey R. J , Steele L. P , Langenfelds R. L , Pak B. C . High precision long-term monitoring of radiatively active and related trace gases at surface sites and from aircraft in the Southern Hemisphere atmosphere. J. Atmos. Sci. 1999; 56: 279–285.
  • Fung I , John J , Lerner J , Mattews E , Prather M , co-authors . Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 1991; 96: 13033–13065.
  • Hansen J , Sato M , Ruedy R , Lacis A , Oinas V . Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. 2000; 97(18): 9875–9880.
  • Hodson E. L , Poulter B , Zimmermann N. E , Prigent C , Kaplan J. O . The El Niño–Southern Oscillation and wetland methane interannual variability. Geophys. Res. Lett. 2011; 38
  • Houweling S , Röckmann T , Aben I , Keppler F , Krol M , co-authors . Atmospheric constraints on global emissions of methane from plants. Geophys. Res. Lett. 2006; 33: L15821.
  • Ishidoya S, Aoki S, Goto D, Nakazawa T, Taguchi S, co-authors. Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of the global CO2 budget for the period 2000–2010. Tellus B. 2012; 64 Online at: http://dx.doi.org/10.3402/tellusb.v3464i3400.18964.
  • Ishijima K , Nakazawa T , Sugawara S , Aoki S , Saeki T . Concentration variations of tropospheric nitrous oxide over Japan. Geophys. Res. Lett. 2001; 28: 171–174.
  • Ishijima K , Patra P. K , Takigawa M , Machida T , Matsueda H , co-authors . Stratospheric influence on the seasonal cycle of nitrous oxide in the troposphere as deduced from aircraft observations and model simulations. J. Geophys. Res. 2010; 115
  • Ito A , Inatomi M . Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences. 2012; 9: 759–773.
  • Jiang J. H , Livesey N. J , Su H , Neary L , McConnell J. C , co-authors . Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: new observations from the Aura Microwave Limb Sounder. Geophys. Res. Lett. 2007; 34
  • Khalil M. A. K , Khalil M. A. K . Atmospheric methane: an introduction. Atmospheric Methane: Its Role in the Global Environment. 2000; Berlin: Springer-Verlag. 1–8.
  • Kirschke S , Bousquet P , Ciais P , Saunois M , Canadell J. G , co-authors . Three decades of global methane sources and sinks. Nat. Geosci. 2013; 6: 813–823.
  • Langenfelds R. L , Francey R. J , Pak B. C , Steele L. P , Lloyd J , co-authors . Interannual growth rate variations of atmospheric CO2 and its δ 13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cy. 2002; 16
  • Locatelli R , Bousquet P , Chevallier F , Fortems-Cheney A , Szopa S , co-authors . Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. Atmos. Chem. Phys. 2013; 13: 9917–9937.
  • Lowe D. C , Manning M. R , Brailsford G. W , Bromley A. M . The 1991–1992 atmospheric methane anomaly: southern hemisphere 13C decrease and growth rate fluctuations. Geophys. Res. Lett. 1997; 24(8): 857–860.
  • Matsueda H , Inoue H. Y . Measurements of atmospheric CO2 and CH4 using a commercial airliner from 1993 to 1994. Atmos. Environ. 1996; 30: 1647–1655.
  • Matthews E , Fung I . Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cy. 1987; 1: 61–86.
  • Miller J. B , Gatti L. V , d'Amelio M. T. S , Crotwell A. M , Dlugokencky E. J , co-authors . Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett. 2007; 34
  • Morimoto S , Aoki S , Nakazawa T , Yamanouchi T . Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Ålesund, Svalbard from 1996 to 2004. Geophys. Res. Lett. 2006; 33
  • Nakazawa T , Ishizawa M , Higuchi K , Trivett N. B. A . curve fitting methods applied to CO2 flask data. Environmetrics. 1997; 8: 197–218.
  • Nakazawa T , Machida T , Tanaka M , Fujii Y , Aoki S , co-authors . Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era. Geophys. Res. Lett. 1993a; 20: 943–946.
  • Nakazawa T , Morimoto S , Aoki S , Tanaka M . Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan. Tellus B. 1993b; 45: 258–274.
  • Olivier J. G. J , Berdowski J. J. M , Berdowski J , Guicherit R , BJ Heij . Global emissions sources and sinks. The Climate System. 2001; Lisse, The Netherlands: A. A. Balkema Publishers/Swets & Zeitlinger Publishers. 33–78.
  • Onogi K , Tsutsui J , Koide H , Sakamoto M , Kobayashi S , co-authors . The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 2007; 85: 369–432.
  • Park M , Randel W. J , Emmons L. K , Liversey N. J . Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J. Geophys. Res. 2009; 114
  • Patra P. K , Houweling S , Krol M , Bousquet P , Belikov D , co-authors . TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmos. Chem. Phys. 2011a; 11: 12813–12837.
  • Patra P. K , Niwa Y , Schuck T. J , Brenninkmeijer C. A. M , Machida T , co-authors . Carbon balance of South Asia constrained by passenger aircraft CO2 measurements. Atmos. Chem. Phys. 2011b; 11: 4163–4175.
  • Patra P. K , Takigawa M , Ishijima K , Choi B.-C , Cunnold D , co-authors . Growth rate, seasonal, synoptic and diurnal variations in lower atmospheric methane and its budget. J. Meteorol. Soc. Jpn. 2009; 87: 635–663.
  • Prinn R , Cunnold D , Rasmussen R , Simmonds P , Alyea F , co-authors . Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data. J. Geophys. Res. 1990; 95(D11): 18369–18385.
  • Rasmussen R. A , Khalil M. A. K . Atmospheric methane (CH4): trends and seasonal cycles. J. Geophys. Res. 1981; 86: 9826–9832.
  • Rigby M , Prinn R. G , Fraser P. J , Simmonds P. G , Langenfelds R. L , co-authors . Renewed growth of atmospheric methane. Geophys. Res. Lett. 2008; 35: L22805.
  • Sasakawa M , Ito A , Machida T , Tsuda N , Niwa Y , co-authors . Annual variation of CH4 emissions from the middle taiga in West Siberian Lowland (2005–2009): a case of high CH4 flux and precipitation rate in the summer of 2007. Tellus B. 2012; 64: 17514.
  • Sasakawa M , Shimoyama K , Machida T , Tsuda N , Suto H , co-authors . Continuous measurements of methane from a tower network over Siberia. Tellus B. 2010; 62(5):
  • Schuck T. J , Ishijima K , Patra P. K , Baker A. K , Machida T , co-authors . Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. J. Geophys. Res. 2012; 117
  • Shirai T , Machida T , Marsueda H , Sawa Y , Niwa Y , co-authors . Relative contribution of transport/surface flux to the seasonal verztical synoptic CO2 variability in the troposphere over Narita. Tellus B. 2012; 64
  • Simpson I. J , Andersen M. P. S , Meinardi S , Bruhwiler L , Blake N. J , co-authors . Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature. 2012; 488: 490–494.
  • Simpson I. J , Blake D. R , Rowland F. S , Chen T.-Y . Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophys. Res. Lett. 2002; 29(10): 1479.
  • Simpson I. J , Rowland F. S , Meinardi S , Blake D. R . Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophys. Res. Lett. 2006; 33
  • Spivakovsky C. M , Logan J. A , Montzka S. A , Balkanski Y. J , Foreman-Fowler M , co-authors . Three-dimensional climatological distribution of tropospheric OH: update and evaluation. J. Geophys. Res. 2000; 105: 8931–8980.
  • Takahashi M , Nakazawa T , Aoki S , Goto D , Kato K , co-authors . Intercomparison experiments for Greenhouse Gases Observation (iceGGO) in Japan. Asia-Pacific GAW Greenhouse Gases Newsletter, Korea Meteorological Administration . 2013; 4: 45–49.
  • Tanaka M , Nakazawa T , Aoki S . Time and space variations of tropospheric carbon dioxide over Japan. Tellus B. 1987; 39: 3–12.
  • Terao Y , Mukai H , Nojiri Y , Machida T , Tohjima Y , co-authors . Interannual variability and trends in atmospheric methane over the western Pacific from 1994 to 2010. J. Geophys. Res. 2011; 116
  • Tohjima Y , Kubo M , Minejima C , Mukai H , Tanimoto H , co-authors . Temporal changes in emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos. Chem. Phys. 2014; 14: 1663–1677.
  • Tohjima Y , Machida T , Utiyama M , Katsumoto M , Fujinuma Y , co-authors . Analysis and presentation of in situ atmospheric methane measurements from Cape Ochi-ishi and Hateruma Island. J. Geophys. Res. 2002; 107
  • Umezawa T , Machida T , Aoki S , Nakazawa T . Contributions of natural and anthropogenic sources to atmospheric methane variations over western Siberia estimated from its carbon and hydrogen isotopes. Global Biogeochem. Cy. 2012a; 26
  • Umezawa T , Machida T , Ishijima K , Matsueda H , Sawa Y , co-authors . Carbon and hydrogen isotopic ratios of atmospheric methane in the upper troposphere over the Western Pacific. Atmos. Chem. Phys. 2012b; 12: 8095–8113.
  • van der Werf G. R , Randerson J. T , Giglio L , Collatz G. J , Mu M , co-authors . Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010; 10: 11707–11735.
  • Volk C. M , Elkins J. W , Fahey D. W , Dutton G. S , Gilligan J. M , co-authors . Evaluation of source gas lifetimes from stratospheric observations. J. Geophys. Res. 1997; 102(D21): 25543–25564.
  • Wada A , Matsueda H , Sawa Y , Tsuboi K , Okubo S . Seasonal variation of enhancement ratios of trace gases observed over 10 years in the western North Pacific. Atmos. Environ. 2011; 45: 2129–2137.
  • Walter B. P , Heimann M. A . Process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem. Cy. 2000; 14(3): 745–765.
  • Walter B. P , Heimann M , Matthews E . Modeling modern methane emissions from natural wetlands 2. Interannual variations 1982–1993. J. Geophys. Res. 2001; 106(D24): 34207–34219.
  • Wang J. S , Logan J. A , McElroy M. B . A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem. Cy. 2004; 18
  • Warwick N. J , Bekki S , Law K. S , Nisbet E. G , Pyle J. A . The impact of meteorology on the interannual growth rate of atmospheric methane. Geophys. Res. Lett. 2002; 29
  • Xiao Y , Jacob D. J , Wang J. S , Logan J. A , Palmer P. I , co-authors . Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow. J. Geophys. Res. 2004; 109
  • Xiong X , Barnet C. D , Zhuang Q , Machida T , Sweeney C , co-authors . Mid-upper tropospheric methane in the high Northern Hemisphere: spaceborne observations by AIRS, aircraft measurements, and model simulations. J. Geophys. Res. 2010; 115
  • Xiong X , Houweling S , Wei J , Maddy E , Sun F , co-authors . Methane plume over south Asia during the monsoon season: satellite observation and model simulation. Atmos. Chem. Phys. 2009; 9: 783–794.
  • Yashiro H . A study of temporal and spatial variations of ropospheric carbon monoxide. 2007; Tohoku University, Sendai, Japan: Graduate School of Science. PhD thesis.