509
Views
2
CrossRef citations to date
0
Altmetric
Original Research Articles

Spaceborne observations of low surface aerosol concentrations in the Stockholm region

, &
Article: 28951 | Received 25 Jun 2015, Accepted 12 Aug 2016, Published online: 16 Sep 2016

References

  • Al-Saadi J., Szykman J., Pierce R. B., Kittaka C., Neil D., co-authors. Improving national air quality forecasts with satellite aerosol observations. Bull. Am. Meteorol. Soc. 2005; 86: 1249–1261. DOI: http://dx.doi.org/10.1175/BAMS-86-9-1249.
  • Anderson J. O. , Thundiyil J. G. , Stolbach A . Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012; 8: 166–175.
  • Ångström A . The parameters of atmospheric turbidity. Tellus. 1964; 16: 64–75.
  • Areskoug H . Bestämning av PM10 – En jämförelse av de vanligaste mätmetoderna använda i Sverige och den europeiska referensmetoden [Measurements of PM10 – A Comparison of the Most Common Methods Used in Sweden with the European Reference Method]. 2007; Stockholm, Sweden: Stockholm University (in Swedish),. ITM report 168.
  • Baars H., Kanitz T., Engelmann R., Althausen D., Heese B., co-authors. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmos. Chem. Phys. 2016; 16: 5111–5137. DOI: http://dx.doi.org/10.5194/acp-16-5111-2016.
  • Boys B. L., Martin R. V., Van Donkelaar A., MacDonell R. J., Hsu N. C., co-authors. Fifteen-year global time series of satellite-derived fine particulate matter. Environ. Sci. Technol. 2014; 48: 11109–11118. DOI: http://dx.doi.org/10.1021/es502113p.
  • CALIPSO Data User's Guide. 2015. Online at: http://www-calipso.larc.nasa.gov/resources/calipso_users_guide/index.php.
  • Chudnovsky A., Tang C., Lyapustin A., Wang Y., Schwartz J., co-authors. A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions. Atmos. Chem. Phys. 2013; 13: 10907–10917. DOI: http://dx.doi.org/10.5194/acp-13-10907-2013.
  • Christopher S. A., Gupta P. Satellite remote sensing of particulate matter air quality: the cloud-cover problem. J. Air Waste Manag. Assoc. 2010; 60: 596–602. DOI: http://dx.doi.org/10.3155/1047-3289.60.5.596.
  • Crumeyrolle S., Chen G., Ziemba L., Beyersdorf A., Thornhill L., co-authors. Factors that influence surface PM2.5 values inferred from satellite observations: perspective gained for the US Baltimore/Washington metropolitan area during DISCOVER-AQ. Atmos. Chem. Phys. 2014; 14: 2139–2153. DOI: http://dx.doi.org/10.5194/acp-14-2139-2014.
  • DiNicolantonio W., Cacciari A., Tomasi C. Particulate matter at surface: Northern Italy monitoring based on satellite remote sensing, meteorological fields, and in-situ Samplings. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2009; 2: 284–292. DOI: http://dx.doi.org/10.1109/JSTARS.2009.2033948.
  • Engel-Cox J. A. , Holloman C. H. , Coutant B. W. , Hoff R. M . Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004; 38: 2495–2509.
  • Gidhagen L., Johansson C., Langner J., Olivares G. Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmos. Environ. 2004; 40: 2029–2044. DOI: http://dx.doi.org/10.1016/j.atmosenv.2004.02.014.
  • Glantz P., Kokhanovsky A., Von Hoyningen-Huene W., Johansson C. Estimating PM2.5 over southern Sweden using space-borne optical measurements. Atmos. Environ. 2009; 43: 5838–5846. DOI: http://dx.doi.org/10.1016/j.atmosenv.2009.05.017.
  • Glantz P., Tesche M. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe. Atmos. Meas. Tech. 2012; 5: 1727–1740. DOI: http://dx.doi.org/10.5194/amt-5-1727-2012.
  • Hoff R. M., Christopher S. A. Remote sensing of particulate pollution from space: have we reached the promised land?. J. Air Waste Manag. Assoc. 2009; 59: 645–675. DOI: http://dx.doi.org/10.3155/1047-3289.59.6.645.
  • Holben B. N. , Eck T. F. , Slutsker I. , Tanré D. , Buis J. P. , co-authors . AERONET – a federated instrument network and data archive for aerosol characterization. Rem. Sens. Environ. 1998; 66: 1–16.
  • Hutchison K. D . Applications of MODIS satellite data and products for monitoring air quality in the state of Texas. Atmos. Environ. 2003; 37: 2403–2412.
  • Johansson C., Norman M., Gidhagen L. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 2007; 127: 477–487. DOI: http://dx.doi.org/10.1007/s10661-006-9296-4.
  • Kacenelenbogen M., Léon J.-F., Chiapello I., Tanré D. Characterization of aerosol pollution events in France using groundbased and POLDER-2 satellite data. Atmos. Chem. Phys. 2006; 6: 4843–4849. DOI: http://dx.doi.org/10.5194/acp-6-4843–2006.
  • Künzli N., Kaiser R., Medina S., Studnicka M., Chanel O., co-authors. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 2000; 356: 795–801. DOI: http://dx.doi.org/10.1016/S0140-6736(00)02653-2.
  • Levy R. C., Mattoo S., Munchak L. A., Remer L. A., Sayer A. M., co-authors. The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013; 6: 2989–3034. DOI: http://dx.doi.org/10.5194/amt-6-2989-2013.
  • Li J., Carlson B. E., Lacis A. A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States?. Atmos. Environ. 2015; 102: 260–273. DOI: http://dx.doi.org/10.1016/j.atmosenv.2014.12.010.
  • Liu Y., Sarnat J. A., Kilaru V., Jacob D. J., Koutrakis P. Estimating ground-level PM 2.5 in the eastern United States using satellite remote sensing. Environ. Sci. Technol. 2005; 39: 3269–3278. DOI: http://dx.doi.org/10.1021/es049352m.
  • Livingston J. M., Redemann J., Shinozuka Y., Johnson R., Russell P. B., co-authors. Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008. Atmos. Chem. Phys. 2014; 14: 2015–2038. DOI: http://dx.doi.org/10.5194/acp-14-2015-2014.
  • Munchak L. A., Levy R. C., Mattoo S., Remer L. A., Holben B. N., co-authors. MODIS 3 km aerosol product: applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013; 6: 1747–1759. DOI: http://dx.doi.org/10.5194/amt-6-1747-2013.
  • Paciorek C. J., Liu Y. Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter. Environ. Health Perspect. 2009; 117: 904–909. DOI: http://dx.doi.org/10.1289/ehp.0800360.
  • Patashnick H. , Rupprecht E. G . Continuous PM-10 measurements using the tapered element oscillating microbalance. J. Air Waste Manag. Assoc. 1991; 41: 1079–1083.
  • Pelletier B., Santer R., Vidot J. Retrieving of particulate matter from optical measurements: a semiparametric approach. J. Geophys. Res. 2007. ; 112 , D06208. DOI: http://dx.doi.org/10.1029/2005JD006737.
  • Remer L. A., Kaufman Y. J., Tanré D., Mattoo S., Chu D. A., co-authors. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005; 62 , 947–973. DOI: http://dx.doi.org/10.1175/JAS3385.1.
  • Remer L. A., Kleidman R. G., Levy R. C., Kaufman Y. J., Tanré D., co-authors. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 2008; 113 , D14S07. DOI: http://dx.doi.org/10.1029/2007JD009661.
  • Remer L. A., Mattoo S., Levy R. C., Munchak L. A. MODIS 3 km aerosol product: algorithm and global perspective. Atmos. Meas. Tech. 2013; 6: 1829–1844. DOI: http://dx.doi.org/10.5194/amt-6-1829-2013.
  • Schaap M., Apituley A., Timmermans R. M. A., Koelemeijer R. B. A., de Leeuw G. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 2009; 9: 909–925. DOI: http://dx.doi.org/10.5194/acp-9-909-2009.
  • Snider G., Weagle C. L., Martin R. V., van Donkelaar A., Conrad K., co-authors. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmos. Meas. Tech. 2015; 8: 505–521. DOI: http://dx.doi.org/10.5194/amt-8-505-2015.
  • Tunved P., Hansson H.-C., Kulmala M., Aalto P., Viisanen Y., co-authors. One year boundary layer aerosol size distribution data from five Nordic background stations. Atmos. Chem. Phys. 2003; 3: 2183–2205. DOI: http://dx.doi.org/10.5194/acp-3-2183-2003.
  • Van Donkelaar A., Martin R. V., Brauer M., Kahn R., Levy R., co-authors. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ. Health Perspect. 2010; 118: 847–855. DOI: http://dx.doi.org/10.1289/ehp.0901623.
  • Van Donkelaar A., Martin R. V., Park R. J. Estimating ground-level PM2.5 with aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. 2006; 111 , D21201. DOI: http://dx.doi.org/10.1029/2005JD006996.
  • Wang J., Christopher S. A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys. Res. Lett. 2003; 30 , 2095. DOI: http://dx.doi.org/10.1029/2003GL018174.
  • Winker D. M. , Vaughan M. A. , Omar A. , Hu Y. , Powell K. A. , co-authors . Overview of the CALIPSO Mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol. 2009; 26: 2310–2323.
  • World Health Organization (WHO). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. 2005; Geneva, Switzerland: WHO Press,. Global update 2005. Summary of risk assessment.
  • Zhang H., Hoff R. M., Engel-Cox J. A. The relation between moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U.S. Environmental Protection Agency regions. J. Air Waste Manag. Assoc. 2009; 59: 1358–1369. DOI: http://dx.doi.org/10.3155/1047-3289.59.11.1358.