2,240
Views
29
CrossRef citations to date
0
Altmetric
Original Research Articles

Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Article: 28968 | Received 25 Jun 2015, Accepted 25 Apr 2016, Published online: 12 May 2016

References

  • Alexandrov G. A . Explaining the seasonal cycle of the globally averaged CO2 with a carbon-cycle model. Earth Syst. Dynam. 2014; 5: 345–354.
  • Andres R. J. , Gregg J. S. , Losey L. , Marland G. , Boden T. A . Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B. 2011; 63: 309–327.
  • Angert A. , Biraud S. , Bonfils C. , Henning C. C. , Buermann W , co-authors . Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl. Acad. Sci. 2005; 102: 10823–10827.
  • Bacastow R. B. , Keeling C. D. , Whorf T. P . Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res. 1985; 90: 10529–10540.
  • Baker I. T., Prihodko L., Denning A. S., Goulden M., Miller S., co-authors. Seasonal drought stress in the Amazon: reconciling models and observations. J. Geophys. Res. 2008; 113 G00B01. DOI: http://dx.doi.org/10.1029/2007JG000644.
  • Baldocchi D. , Falge E. , Gu L. , Olson R. , Hollinger D. , co-authors . FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001; 82: 2415–2434.
  • Barichivich J. , Briffa K. R. , Myneni R. B. , Osborn T. J. , Melvin T. M. , co-authors . Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950–2011. Global Change. Biol. 2013; 19: 3167–3183.
  • Belshe E. F. , Schuur E. A. G. , Bolker B. M . Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol. Lett. 2013; 16: 1307–1315.
  • Buermann W., Bikash P. R., Jung M., Burn D. H., Reichstein M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 2013; 8 DOI: http://dx.doi.org/10.1088/1748-9326/1088/1082/024027.
  • Buitenwerf R. , Rose L. , Higgins S. I . Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change. 2015; 5: 364–368.
  • Cramer W. , Kicklighter D. W. , Bondeau A. , Moore B. I. , Churkina G. , co-authors . Comparing global NPP models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol. 1999; 5: 1–15.
  • Forkel M. , Carvalhais N. , Rödenbeck C. , Keeling R. , Heimann M. , co-authors . Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science. 2016; 351: 696–699.
  • Fu Y. H. , Zhao H. , Piao S. , Peaucelle M. , Peng S. , co-authors . Declining global warming effects on the phenology of spring leaf unfolding. Nature. 2015; 526: 104–107.
  • Graven H. D. , Keeling R. F. , Piper S. C. , Patra P. K. , Stephens B. B. , co-authors . Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science. 2013; 341: 1085–1089.
  • Gray J. M. , Frolking S. , Kort E. A. , Ray D. K. , Kucharik C. J. , co-authors . Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature. 2014; 515: 398–401.
  • Gunderson C. A. , Edwards N. T. , Walker A. V. , O'Hara K. H. , Campion C. M. , co-authors . Forest phenology and a warmer climate – growing season extension in relation to climatic provenance. Global Change. Biol. 2012; 18: 2008–2025.
  • Gurney K. R. , Eckels W. J . Regional trends in terrestrial carbon exchange and their seasonal signatures. Tellus B. 2011; 63: 328–339.
  • Hayes D. J., McGuire A. D., Kicklighter D. W., Gurney K. R., Burnside T. J., co-authors. Is the northern high-latitude land-based CO2 sink weakening?. Global Biogeochem. Cycles. 2011; 25 GB3018. DOI: http://dx.doi.org/10.1029/2010GB003813.
  • Huang S. , Arain M. A. , Arora V. K. , Yuan F. , Brodeur J. , co-authors . Analysis of nitrogen controls on carbon and water exchanges in a conifer forest using the CLASS-CTEM N+ model. Ecol. Model. 2011; 222: 3743–3760.
  • Huntzinger D. N. , Schwalm C. , Michalak A. M. , Schaefer K. , King A. W. , co-authors . The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project: Part 1: overview and experimental design. Geosci. Model Dev. 2013; 6: 2121–2133.
  • Hurtt G. C. , Chini L. P. , Frolking S. , Betts R. A. , Feddema J. , co-authors . Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change. 2011; 109: 117–161.
  • Ito A. , Inatomi M . Water-use efficiency of the terrestrial biosphere: a model analysis on interactions between the global carbon and water cycles. J. Hydrometeorol. 2012; 13: 681–694.
  • Jain A. K., Yang X. Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change. Global. Biogeochem. Cycles. 2005; 19 GB2015. DOI: http://dx.doi.org/10.1029/2004GB002349.
  • Jeganathan C. , Dash J. , Atkinson P. M . Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens. Environ. 2014; 143: 154–170.
  • Jung M., Reichstein M., Margolis H. A., Cescatti A., Richardson A. D., co-authors. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 2011; 116 G00J07. DOI: http://dx.doi.org/10.1029/2010JG001566.
  • Keeling C. D. , Chin J. F. S. , Whorf T. P . Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature. 1996; 382: 146–149.
  • Keenan T. F. , Gray J. , Friedl M. A. , Toomey M. , Bohrer G. , co-authors . Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change. 2014; 4: 598–604.
  • Kohlmaier G. H. , Sire E.-O. , Janecek A. , Keeling C. D. , Piper S. C. , co-authors . Modelling the seasonal contribution of a CO2 fertilization effect of the terrestrial vegetation to the amplitude increase in atmospheric CO2 at Mauna Loa Observatory. Tellus B. 1989; 41: 487–510.
  • Krinner G., Viovy N., de Noblet-Ducoudré N., Ogée J., Polcher J., co-authors. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles. 2005; 19 GB1015. DOI: http://dx.doi.org/10.1029/2003GB002199.
  • Law R. M., Peters W., Rödenbeck C., Aulagnier C., Baker I., co-authors. TransCom model simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002. Global Biogeochem. Cycles. 2008; 22 GB3009. DOI: http://dx.doi.org/10.1029/2007GB003050.
  • Lei H. , Huang M. , Leung L. R. , Yang D. , Shi X. , co-authors . Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the community land model using two runoff parameterizations. J. Adv. Model Earth Syst. 2014; 6: 658–679.
  • Le Quéré C. , Moriarty R. , Andrew R. M. , Canadell J. G. , Sitch S. , co-authors . Global carbon budget 2015. Earth Syst. Sci. Data. 2015; 7: 349–396.
  • Luo Y. , Keenan T. F. , Smith M . Predictability of the terrestrial carbon cycle. Global Change Biol. 2015; 27: 1737–1751.
  • Mao J. , Thornton P. E. , Shi X. , Zhao M. , Post W. M . Remote sensing evaluation of CLM4 GPP for the period 2000–09. J. Clim. 2012; 25: 5327–5342.
  • Mouillot F., Narasimha A., Balkanski Y., Lamarque J.-F., Field C. B. Global carbon emissions from biomass burning in the 20th century. Geophys. Res. Lett. 2006; 33 L01801. DOI: http://dx.doi.org/10.1029/2005GL024707.
  • Myneni R. B. , Keeling C. D. , Tucker C. J. , Asrar G. , Nemani R. R . Increased plant growth in the northern high latitudes from 1981 to 1991. Nature. 1997; 386: 698–702.
  • Peng S., Ciais P., Chevallier F., Peylin P., Cadule P., co-authors. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models. Global Biogeochem. Cycles. 2015; 29: 46–64. DOI: http://dx.doi.org/10.1002/2014GB004931.
  • Piao S., Ciais P., Friedlingstein P., de Noblet-Ducoudré N., Cadule P., co-authors. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem. Cycles. 2009; 23 GB4026. DOI: http://dx.doi.org/10.1029/2008GB003339.
  • Piao S. , Ciais P. , Friedlingstein P. , Peylin P. , Reichstein M. , co-authors . Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature. 2008; 451: 49–52.
  • Post W. M. , King A. W. , Wullschleger S. D . Historical variations in terrestrial biospheric carbon storage. Global Biogeochem. Cycles. 1997; 11: 99–109.
  • Randerson J. T. , Thompson M. V. , Conway T. J. , Fung I. Y. , Field C. B . The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles. 1997; 11: 535–560.
  • Ricciuto D. M., King A. W., Dragoni D., Post W. M. Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: effects of constraining variables and data record length. J. Geophys. Res. 2011; 116 G01033. DOI: http://dx.doi.org/10.1029/2010JG001400.
  • Richardson A. D. , Anderson R. S. , Arain M. A. , Barr A. G. , Bohrer G. , co-authors . Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biol. 2012; 18: 566–584.
  • Richardson A. D. , Keenan T. F. , Migliavacca M. , Ryu Y. , Sonnentag O. , co-authors . Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013; 169: 156–173.
  • Sacks W. J. , Deryng D. , Foley J. A. , Ramankutty N . Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 2010; 19: 607–620.
  • Schaefer K., Collatz G. J., Tans P., Denning A. S., Baker I., co-authors. Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model. J. Geophys. Res. 2008; 113 G03034. DOI: http://dx.doi.org/10.1029/2007JG000603.
  • Schimel D. , Stephens B. B. , Fisher J. B . Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. 2015; 112: 436–441.
  • Schneising O. , Reuter M. , Buchwitz M. , Heymann J. , Bovensmann H. , co-authors . Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability. Atmos. Chem. Phys. 2014; 14: 133–141.
  • Shi X., Mao J., Thornton P. E., Hoffman F. M., Post W. M. The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow. Geophys. Res. Lett. 2011; 38 L08704. DOI: http://dx.doi.org/10.1029/2011GL046773.
  • Sitch S. , Huntingford C. , Gedney N. , Levy P. E. , Lomas M. , co-authors . Evaluation of the terrestrial carbon cycle, future plant geography and climate – carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biol. 2008; 14: 2015–2039.
  • Sitch S. , Smith B. , Prentice I. C. , Arneth A. , Bondeau A. , co-authors . Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol. 2003; 9: 161–185.
  • Thornton P. E. , Law B. E. , Gholz H. L. , Clark K. L. , Falge E. , co-authors . Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needle leaf forests. Agric. For. Meteorol. 2002; 113: 185–222.
  • Tian H. , Chen G. , Zhang C. , Liu M. , Sun G. , co-authors . Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States. Ecosystems. 2012; 15: 674–694.
  • Tian H., Lu C., Yang J., Banger K., Huntzinger D. N., co-authors. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Global Biogeochem. Cycles. 2015; 29 DOI: http://dx.doi.org/10.1002/2014GB005021.
  • Tian H., Xu X., Lu C., Liu M., Ren W., co-authors. Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. 2011; 116 G02011. DOI: http://dx.doi.org/10.1029/2010JG001393.
  • Urbanski S., Barford C., Wofsy S., Kucharik C., Pyle E., co-authors. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. 2007; 112 G02020. DOI: http://dx.doi.org/10.1029/2006JG000293.
  • van der Werf G. R. , Randerson J. T. , Giglio L. , Collatz G. J. , Mu M. , co-authors . Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010; 10: 11707–11735.
  • Wei Y. , Liu S. , Huntzinger D. N. , Michalak A. M. , Viovy N. , co-authors . The North American Carbon Program Multipscale Synthesis and Terrestrial Model Intercomparison Project – Part 2: environmental driver data. Geosci. Model Dev. 2014; 7: 2875–2893.
  • Xu L. , Myneni R. B. , Chapin F. S. I. , Callaghan T. V. , Pinzon J. E. , co-authors . Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change. 2013; 3: 581–586.
  • Yang J., Tian H., Tao B., Ren W., Lu C., co-authors. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochem. Cycles. 2015; 29 DOI: http://dx.doi.org/10.1002/2015GB005160.
  • Yu Z., Wang J., Liu S., Piao S., Ciais P., co-authors. Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years. Global Ecol. Biogeogr. 2016; 25: 586–595. DOI: http://dx.doi.org/10.1111/geb.12441.
  • Zeng N., Mariotti A., Wetzel P. Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles. 2005; 19 GB1016. DOI: http://dx.doi.org/10.1029/2004GB002273.
  • Zeng N. , Zhao F. , Collatz G. J. , Kalnay E. , Salawitch R. J. , co-authors . Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature. 2014; 515: 394–397.
  • Zhang K., Kimball J. S., Hogg E. H., Zhao M., Oechel W. C., co-authors. Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J. Geophys. Res. 2008; 113 G03033. DOI: http://dx.doi.org/10.1029/2007JG000621.
  • Zhao F. , Zeng N . Continued increase in atmospheric CO2 seasonal amplitude in the 21st century projects by the CMIP5 Earth system models. Earth Syst. Dynam. 2014; 5: 423–439.
  • Zhu Q. , Liu J. , Peng C. , Chen H. , Fang X. , co-authors . Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geosci. Model Dev. 2014; 7: 981–999.
  • Zhu Z. , Bi J. , Pan Y. , Ganguly S. , Anav A. , co-authors . Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013; 5: 927–948.
  • Zimov S. A. , Davidov S. P. , Zimova G. M. , Davidova A. I. , Chapin F. S. III. , co-authors . Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2 . Science. 1999; 284: 1973–1977.
  • Zscheischler J. , Michalak A. M. , Schwalm C. , Mahecha M. D. , Huntzinger D. N. , co-authors . Impact of large-scale climate extremes on biospheric carbon fluxes: an imtercomparison based on MsTMIP data. Global Biogeochem. Cycles. 2014; 28: 585–600.