1,642
Views
17
CrossRef citations to date
0
Altmetric
Original Research Articles

Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

, , , , , & show all
Article: 29706 | Received 10 Sep 2015, Accepted 12 Feb 2016, Published online: 11 Apr 2016

References

  • Asmi E. , Kivekäs N. , Kerminen V.-M. , Komppula M. , Hyvärinen A.-P. , co-authors . Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010. Atmos. Chem. Phys. 2011; 11: 12959–12972.
  • Birmili W., Berresheim H., Plass-Dülmer C., Elste T., Gilge S., co-authors. The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmos. Chem. Phys. 2003; 3: 361–376. http://dx.doi.org/10.5194/acp-3-361-2003.
  • Bonn B., Sun S., Haunold W., Sitals R., van Beesel E., co-authors. COMPASS – COMparative particle formation in the atmosphere using portable simulation chamber study techniques. Atmos. Meas. Tech. 2013; 6: 3407–3423. http://dx.doi.org/10.5194/amt-6-3407-2013.
  • Boulon J., Sellegri K., Hervo M., Picard D., Pichon J.-M., co-authors. Investigation of nucleation events vertical extent: a long term study at two different altitude sites. Atmos. Chem. Phys. 2011; 11: 5625–5639. http://dx.doi.org/10.5194/acp-11-5625-2011.
  • Crippa P. , Pryor S. C . Spatial and temporal scales of new particle formation events in eastern North America. Atmos. Environ. 2013; 75: 257–264.
  • Dal Maso M. , Kulmala M. , Riipinen I. , Wagner R. , Hussein T. , co-authors . Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res. 2005; 10: 323–336.
  • Draxler R. R. , Hess G. D . An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag. 1998; 47: 295–308.
  • Hussein T. , Junninen H. , Tunved P. , Kristensson A. , Dal Maso M. , co-authors . Time span and spatial scale of regional new particle formation events over Finland and Southern Sweden. Atmos. Chem. Phys. 2009; 9: 4699–4716.
  • Jacobson M. Z . Fundamentals of Atmospheric Modelling. 2005; Cambridge, United Kingdom: Cambridge University Press. 2nd ed ISBN: 0 521 54865 9.
  • Jeong C.-H. , Evans G. J. , McGuire M. L. , Chang R. Y.-W. , Abbatt J. P. D. , co-authors . Particle formation and growth at five rural and urban sites. Atmos. Chem. Phys. 2010; 10: 7979–7995.
  • Karl M., Leck C., Gross A., Pirjola L. A study of new particle formation in the marine boundary layer over the central Arctic Ocean using a flexible multicomponent aerosol dynamic model. Tellus B. 2012; 64: 17158. http://dx.doi.org/10.3402/tellusb.v64i0.17158.
  • Kerminen V.-M., Lihavainen H., Komppula M., Viisanen Y., Kulmala M. Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophys. Res. Lett. 2005; 32: L14803. http://dx.doi.org/10.1029/2005GL023130.
  • Kerminen V.-M. , Pirjola L. , Kulmala M . How significantly does coagulational scavenging limit atmospheric particle production?. J. Geophys. Res. 2001; 125: 24110–24125.
  • Komppula M. , Sihto S.-L. , Korhonen H. , Lihavainen H. , Kerminen V.-M. , Kulmala M. , Viisanen Y . New particle formation in air mass transported between two measurement sites in Northern Finland. Atmos. Chem. Phys. 2006; 6: 2811–2824.
  • Korhonen H., Lehtinen K. E. J., Kulmala M. Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos. Chem. Phys. 2004; 4: 757–771. http://dx.doi.org/10.5194/acp-4-757-2004.
  • Kristensson A. , Johansson M. , Swietlicki E. , Kivekäs N. , Hussein T. , co-authors . NanoMap: geographical mapping of atmospheric new-particle formation through analysis of particle number size distribution and trajectory data. Boreal Env. Res. 2014; 19(Suppl B): 329–342.
  • Kulmala M., Kontkanen J., Junninen H., Lehtipalo K., Manninen H. E., co-authors. Direct observations of atmospheric aerosol nucleation. Science. 2013; 339: 943–946. [PubMed Abstract].
  • Kulmala M., Laakso L., Lehtinen K. E. J., Riipinen I., Dal Maso M., co-authors. Initial steps of aerosol growth. Atmos. Chem. Phys. 2004b; 4: 2553–2560. http://dx.doi.org/10.5194/acp-4-2553-2004.
  • Kulmala M., Vehkamäki H., Petäjä T., Dal Maso M., Lauri A., co-authors. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 2004a; 35(2):143–176. DOI: http://dx.doi.org/10.1016/j.jaerosci.2003.10.003.
  • Lehtinen K. E. J., Dal Maso M., Kulmala M., Kerminen V.-M. Estimating nucleation rates from apparent particle formation rates and vice versa: revised formulation of the Kerminen–Kulmala equation. J. Aerosol Sci. 2007; 38(9):988–994. DOI: http://dx.doi.org/10.1016/j.jaerosci.2007.06.009.
  • Lehtinen K. E. J. , Kulmala M . A model for particle formation and growth in the atmosphere with molecular resolution in size. Atmos. Chem. Phys. 2003; 3: 251–257.
  • Leppä J. , Anttila T. , Kerminen V.-M. , Kulmala M. , Lehtinen K. E. J . Atmospheric new particle formation: real and apparent growth of neutral and charged particles. Atmos. Chem. Phys. 2011; 11: 4939–4955.
  • Makelä J. M. , Aalto P. , Jokinen V. , Pohja T. , Nissinen A. , co-authors . Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys. Res. Lett. 1997; 24: 1219–1222.
  • Nilsson E. D. , Rannik Ü. , Kulmala M. , Buzorius G. , O'Dowd C. D . Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus B. 2001; 53: 441–461.
  • O'Dowd C. D., Monahan C., Dall'Osto M. On the occurrence of open ocean particle production and growth events. Geophys. Res. Lett. 2010; 37(19):L19805. DOI: http://dx.doi.org/10.1029/2010GL044679.
  • Riipinen I., Yli-Juuti T., Pierce J. R., Petäjä T., Worsnop D. R., co-authors. The contribution of organics to atmospheric nanoparticle growth. Nat. Geosci. 2012; 5: 453. DOI: http://dx.doi.org/10.1038/ngeo1499.
  • Roldin P., Swietlicki E., Schurgers G., Arneth A, Lehtinen K. E. J., Boy M., Kulmala M. Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM Atmos. Chem. Phys. 2011; 11: 5867–5896. doi: http://dx.doi.org/10.5194/acp-11-5867-2011.
  • Stanier C. , Khlystov A. , Pandis S . Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ. 2004; 38: 3275–3284.
  • Stolzenburg M. R., McMurry P. H., Sakurai H., Smith J. N., Mauldin R. L., III, co-authors. Growth rates of freshly nucleated atmospheric particles in Atlanta. J. Geophys. Res. 2005; 110: D22S05. DOI: http://dx.doi.org/10.1029/2005JD005935.
  • Väänänen R. , Kyrö E.-M. , Nieminen T. , Kivekäs N. , Junninen H. , co-authors . Analysis of particle size distribution changes between three measurement sites in northern Scandinavia. Atmos. Chem. Phys. 2013; 13: 11887–11903.
  • Wehner B. , Siebert H. , Stratmann F. , Tuch T. , Wiedensohler A. , co-authors . Horizontal homogeneity and vertical extent of new particle formation events. Tellus B. 2007; 59: 362–371.
  • Wiedensohler A. , Birmili W. , Nowak A. , Sonntag A. , Weinhold K. , co-authors . Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 2012; 5: 657–685.