246
Views
175
CrossRef citations to date
0
Altmetric
Clinical Focus: Diabetes

A Systematic Assessment of Cardiovascular Outcomes in the Saxagliptin Drug Development Program for Type 2 Diabetes

, MD, PhD, Director, , MD, MHS, FACC, , MD, , PhD, , BSc, , MS, , MD, , MD & , MD show all
Pages 16-27 | Published online: 13 Mar 2015

References

  • . Levy P. The current unmet need in type 2 diabetes mellitus: addressing glycemia and cardiovascular disease. Postgrad Med. 2009;121 (3 suppl 1):7–12
  • . Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. Diabetes. 1970;19( suppl):789–830
  • . Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865
  • . Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS Group). Lancet. 1998;352(9131):837–853
  • . ; Action to Control Cardiovascular Risk in Diabetes Study GroupGerstein HC, Miller ME, Byington RP, . Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559
  • . Keech A, Simes R, Barter P, ; FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–1861
  • . Duckworth W, Abraira C, Moritz T, ; VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–139
  • . ; ADVANCE Collaborative GroupPatel A, MacMahon S, Chalmers J, . Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572
  • . Home PD, Pocock SJ, Beck-Nielsen H, ; RECORD Study Team. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–2135
  • . Kelly TN, Bazzano LA, Fonseca VA, Thethi TK, Reynolds K, He J. Systematic review: glucose control and cardiovascular disease in type 2 diabetes. Ann Intern Med. 2009;151(6):394–403
  • . Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–944
  • . Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005;294(20):2581–2586
  • . Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24)2457–2471
  • . Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–1589
  • . Nathan DM, Cleary PA, Backlund JY, ; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–2653
  • . Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med. 2008;359(15):1618–1620
  • . Tran PF, Burman K. Minutes of the FDA Endocrinologic and Metabolic Drugs Advisory Committee meeting; July 1–2, 2008: Silver Spring, MD. http://www.fda.gov/ohrms/dockets/ac/08/minutes/2008-4368m-Final.pdf. Accessed July 1, 2008.
  • . US Food and Drug Administration. Guidance for Industry: Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf. Accessed December 19, 2008.
  • . Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab. 2008;10(5):376–386
  • . Rosenstock J, Aguilar-Salinas C, Klein E, Nepal S, List J, Chen R; CV181-011 Study Investigators.Effect of saxagliptin monotherapy in treatment-naive patients with type 2 diabetes. Curr Med Res Opin. 2009;25(10):2401–2411
  • . DeFronzo RA, Hissa MN, Garber AJ, ; Saxagliptin 014 Study Group. The efficacy and safety of saxagliptin when added to metformin therapy in patients with inadequately controlled type 2 diabetes on metformin alone. Diabetes Care. 2009;32(9):1649–1655
  • . Chacra AR, Tan GH, Apanovitch A, Ravichandran S, List J, Chen R; CV181-040 Investigators.Saxagliptin added to a submaximal dose of sulphonylurea improves glycaemic control compared with uptitration of sulphonylurea in patients with type 2 diabetes: a randomised controlled trial. Int J Clin Pract. 2009;63(9):1395–1406
  • . Hollander P, Li J, Allen E, Chen R; CV181-013 Investigators.Saxagliptin added to a thiazolidinedione improves glycemic control in patients with type 2 diabetes and inadequate control on thiazolidinedione alone. J Clin Endocrinol Metab. 2009;94(12):4810–4819
  • . Jadzinsky M, Pfützner A, Paz-Pacheco E, Xu Z, Allen E, Chen R; CV181-039 Investigators.Saxagliptin given in combination with metformin as initial therapy improves glycaemic control in patients with type 2 diabetes compared with either monotherapy: a randomized controlled trial. Diab Obes Metab. 2009;11(6):611–622
  • . Amato D. A generalized Kaplan-Meier estimator for heterogeneous populations. Communication in Statistics-Theory and Methods. 1988;17:263–286
  • . Barker L, Cadwell B. An analysis of eight 95 per cent confidence intervals for a ratio of Poisson parameters when events are rare. Stat Med. 2008;27(20):4030–4037
  • . Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume II – The Design and Analysis of Cohort Studies (IARC Publication No. 82). Lyon, France: IARC; 1987
  • . Robins J, Breslow N, Greenland S. Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics. 1986;42(2):311–323
  • . Schweizer A, Dejager S, Shao Q, Ligueros-Saylan M, Kothny W. Assessing the cardiovascular safety of vildagliptin: a meta-analysis of adjudicated cardiovascular and cerebrovascular events from a large phase 3 population. Diabetologia. 2009;52( suppl 1):P-915
  • . Shen L, Han J, Yushmanova I, Bruce S, Wilhelm K, Porter L. Cardiovascular safety of exenatide BID: an integrated-analysis from long-term controlled clinical trials in subjects with type 2 diabetes. Diabetologia. 2009;52( suppl 1):759
  • . Irony I. Clinical review sitagliptin phosphate. FDA Division of Metabolism and Endocrinology Products. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021995s000_MedR.pdf:1–210
  • . Williams-Herman D, Round E, Swern AS, . Safety and tolerability of sitagliptin in patients with type 2 diabetes: a pooled analysis. BMC Endocr Disord. 2008;8:14
  • . Williams-Herman D, Round E, Swern AS, . Safety and tolerability of sitagliptin, a selective DPP-4 inhibitor, in patients with type 2 diabetes: pooled analysis of 6139 patients in clinical trials for up to 2 years. Paper presented at: European Association for the Study of Diabetes; September 6–11, 2008; Rome, Italy. Abstract 912.
  • . Kothny W, Gimpelewicz C, Byiers S, Mills D, Fitchet M. Cardiovascular safety profile of vildagliptin, a new DPP-4 inhibitor for the treatment of type 2 diabetes. Paper presented at: European Association for the Study of Diabetes; September 6–11, 2008; Rome, Italy
  • . Lambeir AM, Proost P, Durinx C, . Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem. 2001;276(32):29839–29845
  • . Kawai T, Choi U, Liu PC, Whiting-Theobald NL, Linton GF, Malech HL. Diprotin A infusion into nonobese diabetic/severe combined immunodeficiency mice markedly enhances engraftment of human mobilized CD34+ peripheral blood cells. Stem Cells Dev. 2007;16(3):361–370
  • . Broxmeyer H, Hangoc G, Cooper S, Campbell T, Ito S, Mantel C. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci. 2007;1106:1–19
  • . Campbell TB, Broxmeyer HE. CD26 inhibition and hematopoiesis: a novel approach to enhance transplantation. Front Biosci. 2008;13:1795–1805
  • . Christopherson K 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000–1003
  • . Liles WC, Broxmeyer HE, Rodger E, . Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003;102(8):2728–2730
  • . Christopherson K, Cooper S, Broxmeyer HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood. 2003;101(12):4680–4686
  • . Christopherson KW, Uralil SE, Porecha NK, Zabriskie RC, Kidd SM, Ramin SM. G-CSF- and GM-CSF-induced upregulation of CD26 peptidase downregulates the functional chemotactic response of CD34+CD38- human cord blood hematopoietic cells. Exp Hematol. 2006;34(8):1060–1068
  • . Yamani MH, Ratliff NB, Cook DJ, . Peritransplant ischemic injury is associated with up-regulation of stromal cell-derived factor-1. J Am Coll Cardiol. 2005;46(6):1029–1035
  • . Zhao T, Zhang D, Millard RW, Ashraf M, Wang Y. Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. Am J Physiol Heart Circ Physiol. 2009;296(4):H976–H986
  • . Li N, Lu X, Zhao X, . Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells. 2009;27(4):961–970
  • . Zaruba MM, Theiss HD, Vallaster M, . Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell. 2009;4(4):313–323
  • . Penn MS. Importance of the SDF-1: CXCR4 axis in myocardial repair. Circ Res. 2009;104(10):1133–1135
  • . Penn MS, Mangi AA. Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res. 2008;102(12):1471–1482
  • . Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110(21):3300–3305
  • . Askari AT, Unzek S, Popovic ZB, . Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703
  • . Unzek S, Zhang M, Ma N, Mills WR, Laurita KR, Penn MS. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo. Cell Transplant. 2007;16(9):879–886
  • . Tang J, Wang J, Yang J, Kong X. Adenovirus-mediated stromal cell-derived-factor-1alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+ stem cells and anti-apoptosis. Interact Cardiovasc Thorac Surg. 2008;7(5):767–770
  • . Saxena A, Fish JE, White MD, . Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation. 2008;117(17):2224–2231
  • . Sasaki T, Fukazawa R, Ogawa S, . Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatr Int. 2007;49(6):966–971
  • . Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation. 2007;116(15):1683–1692
  • . Tillmanns J, Rota M, Hosoda T, . Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci U S A 2008;105(5):1668–1673
  • . Zhang M, Mal N, Kiedrowski M, . SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197–3207
  • . Elmadbouh I, Haider HK, Jiang S, Idris NM, Lu G, Ashraf M. Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2007;42(4):792–803
  • . Henry R, Smith S, Schwartz S, List J, Duan Y, Chen R. Beta-cell stimulation by saxagliptin in patients with type 2 diabetes. Diabetes. 2009;58( suppl 1):A119
  • . Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–2350
  • . Bose AK, Mocanu MM, Carr RD, Yellon DM. Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc Drugs Ther. 2007;21(4):253–256
  • . Nikolaidis LA, Doverspike A, Hentosz T, . Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther. 2005;312(1):303–308
  • . Nikolaidis LA, Elahi D, Hentosz T, . Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110(8):955–961
  • . Nikolaidis LA, Mankad S, Sokos GG, . Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109(8):962–965
  • . Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–699
  • . Proost P, Struyf S, Schols D, . Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett. 1998;432(1–2):73–76
  • . Iwata S, Yamaguchi N, Munakata Y, . CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of T cells and monocytes toward RANTES: possible mechanism for the switch from innate to acquired immune response. Int Immunol. 1999;11(3):417–426
  • . Lim JK, Burns JM, Lu W, DeVico AL. Multiple pathways of amino terminal processing produce two truncated variants of RANTES/CCL5. J Leukoc Biol. 2005;78(2):442–452
  • . Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, Marmur JD. Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography. Arterioscler Thromb Vasc Biol. 2007;27(4):929–935
  • . Böger CA, Fischereder M, Deinzer M, . RANTES gene polymorphisms predict all-cause and cardiac mortality in type 2 diabetes mellitus hemodialysis patients. Atherosclerosis. 2005;183(1):121–129
  • . Brandt I, Lambeir AM, Ketelslegers JM, Vanderheyden M, Scharpé S, De Meester I. Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem. 2006;52(1):82–87
  • . Lam CS, Burnett JC Jr, Costello-Boerrigter L, Rodeheffer RJ, Redfield MM. Alternate circulating pro-B-type natriuretic peptide and B-type natriuretic peptide forms in the general population. J Am Coll Cardiol. 2007;49(11):1193–1202
  • . Boerrigter G, Costello-Boerrigter LC, Harty GJ, Lapp H, Burnett JC Jr. Des-serine-proline brain natriuretic peptide 3-32 in cardiorenal regulation. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R897–R901
  • . Sun Y, Zhang Y, Yan M, Wu Y, Zheng X. B-Type natriuretic peptide-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Biol Pharm Bull. 2009;32(9):1545–1551
  • . Wu B, Jiang H, Lin R, Cui B, Wen H, Lu Z. Pretreatment with B-type natriuretic peptide protects the heart from ischemia-reperfusion injury by inhibiting myocardial apoptosis. Tohoku J Exp Med. 2009;219(2):107–114
  • . Gutkowska J, Broderick TL, Bogdan D, Wang D, Lavoie JM, Jankowski M. Downregulation of oxytocin and natriuretic peptides in diabetes: possible implications in cardiomyopathy. J Physiol. 2009;587 (pt 19):4725–4736
  • . Chaudhary KR, Batchu SN, Das D, . Role of B-type natriuretic peptide in epoxyeicosatrienoic acid-mediated improved post-ischaemic recovery of heart contractile function. Cardiovasc Res. 2009;83(2):362–370
  • . Yasuno S, Usami S, Kuwahara K, . Endogenous cardiac natriuretic peptides protect the heart in a mouse model of dilated cardiomyopathy and sudden death. Am J Physiol Heart Circ Physiol. 2009;296(6):H1804–H1810
  • . Schernthaner G. Diabetes and cardiovascular disease: is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR. Wien Med Wochenschr. 2010;160(1–2):8–19
  • . Califf RM, Harrington RA, Blazing MA. Premature release of data from clinical trials of ezetimibe. N Engl J Med. 2009;361(7):712–717

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.