174
Views
18
CrossRef citations to date
0
Altmetric
Clinical Focus: Diabetes and Concomitant Disorders

Review of Insulin-Dependent and Insulin-Independent Agents for Treating Patients With Type 2 Diabetes Mellitus and Potential Role for Sodium-Glucose Co-Transporter 2 Inhibitors

, DO
Pages 214-226 | Published online: 13 Mar 2015

References

  • . International Diabetes Federation. Diabetes Atlas, http://www.idf.org/diabetesatlas/5e/the-global-burden. Accessed December 14, 2012
  • . Centers for Disease Control and Prevention. US Obesity Trends, http://www.cdc.gov/obesity/data/trends.html. Accessed December 14, 2012
  • . Nathan DM, Buse JB, Davidson MB, . Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2006;29(8):1963–1972
  • . Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–591
  • . Inzucchi SE, Bergenstal RM, Buse JB, . American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–1379
  • . Handelsman Y, Mechanick JI, Blonde L, . AACE Task Force for Developing Diabetes Comprehensive Care Plan. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for developing a diabetes mellitus comprehensive care plan. Endocr Pract. 2011;17( suppl 2):1–53
  • . Gerstein HC, Miller ME, Byington RP, . Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559
  • . Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 2002;287(3):360–372
  • . Rodbard HW, Jellinger PS, Davidson JA, . Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. Endocr Pract. 2009;15(6):540–559
  • . Schwartz AV, Sellmeyer DE. Thiazolidinedione therapy gets complicated: is bone loss the price of improved insulin resistance? Diabetes Care. 2007;30(6):1670–1671
  • . Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–2471
  • . Hillaire-Buys D, Faillie JL, Montastruc JL. Pioglitazone and bladder cancer. Lancet. 2011;378(9802):1543–1544; author reply 1544–1545
  • . US Food and Drug Administration. FDA Drug Safety Communication: Updated risk evaluation and mitigation strategy (REMS) to restrict access to rosiglitazone-containing medicines including avandia, avandamet, and avandaryl. http://www.fda.gov/Drugs/DrugSafety/ucm255005.htm. Accessed December 14, 2012
  • . European Medicines Agency. Suspension of rosiglitazone-containing medicines [press release]. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/09/WC500096996.pdf. Accessed December 8, 2012
  • . US Food and Drug Administration. FDA Drug Safety Communication. Update to ongoing safety review of Actos (pioglitazone) and increased risk of bladder cancer. http://www.fda.gov/Drugs/DrugSafety/ucm259150.htm. Accessed December 12, 2012
  • . European Medicines Agency. Updates on ongoing benefit risk review of pioglitazone-containing medicines [press release]. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2011/06/WC500107902.pdf. Accessed December 14, 2012
  • . Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis. Diabetes Care. 2010;33(8):1859–1864
  • . Kahn SE, Haffner SM, Heise MA . ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–2443
  • . Bolen S, Feldman L, Vassy J, . Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007;147(6):386–399
  • . Freeman JS. Role of the incretin pathway in the pathogenesis of type 2 diabetes mellitus. Cleve Clin J Med. 2009;76( suppl 5):S12–S19
  • . Zinman B, Schmidt WE, Moses A, Lund N, Gough S. Achieving a clinically relevant composite outcome of an HbA1c of > 7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme. Diabetes Obes Metab. 2012;14(1):77–82
  • . Stonehouse A, Walsh B, Cuddihy R. Exenatide once-weekly clinical development: safety and efficacy across a range of background therapies. Diabetes Technol Ther. 2011;13(10):1063–1069
  • . Byetta [package insert]. San Diego, CA: Amylin Pharmaceuticals, LLC; 2011
  • . Singh S, Chang HY, Richards TM, . Glucagonlike Peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med. 2013;173(7):534–539
  • . Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–156
  • . Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA. 2007;298(2):194–206
  • . Onglyza® [package insert]. Princeton, NJ: Bristol-Myers Squibb; Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2011
  • . Januvia® [package insert]. Whitehouse Station, NJ: Merck and Co., Inc.; 2011
  • . Tradjenta® [package insert]. Ridgefield, CT: Boehringer Ingelheim; 2011
  • . Cincotta AH, Meier AH. Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care. 1996;19(6):667–670
  • . Pijl H, Ohashi S, Matsuda M, . Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care. 2000;23(8):1154–1161
  • . Cincotta AH, Meier AH, Cincotta MJ. Bromocriptine improves glycaemic control and serum lipid profile in obese type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs. 1999;8(10):1683–1707
  • . DeFronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789–794
  • . Gaziano JM, Cincotta AH, O'Connor CM, . Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care. 2010;33(7):1503–1508
  • . van de Laar FA, Lucassen PL, Akkermans RP, . Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005;28(1):154–163
  • . Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes. 2004;53( suppl 3):S233–S238
  • . Riddle M, Pencek R, Charenkavanich S, . Randomized comparison of pramlintide or mealtime insulin added to basal insulin treatment for patients with type 2 diabetes. Diabetes Care. 2009;32(9):1577–1582
  • . Hollander PA, Levy P, Fineman MS, . Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care. 2003;26(3):784–790
  • . Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med. 2008;168(18):1975–1983
  • . Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31(8):1479–1484
  • . Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168(14):1531–1540
  • . Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–191
  • . Welchol® [package insert]. Parsippany, NJ: Daiichi Sankyo; 2011
  • . Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–183
  • . Mayfield JA, White RD. Insulin therapy for type 2 diabetes: rescue, augmentation, and replacement of beta-cell function. Am Fam Physician. 2004;70(3):489–500
  • . Holman RR, Farmer AJ, Davies MJ, . Three-year efficacy of complex insulin regimens in type 2 diabetes. N Engl J Med. 2009;361(18):1736–1747
  • . Horvath K, Jeitler K, Berghold A, . Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;2:CD005613
  • . Giugliano D, Maiorino MI, Bellastella G, . Efficacy of insulin analogs in achieving the hemoglobin A1c target of < 7% in type 2 diabetes: meta-analysis of randomized controlled trials. Diabetes Care. 2011;34(2):510–517
  • . Fonseca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes Care. 2009;32( suppl 2):S151–S156
  • . DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795
  • . Hoerger TJ, Segel JE, Gregg EW, Saaddine JB. Is glycemic control improving in U.S. adults? Diabetes Care. 2008;31(1):81–86
  • . Mann DM, Woodward M, Ye F, Krousel-Wood M, Muntner P. Trends in medication use among US adults with diabetes mellitus: glycemic control at the expense of controlling cardiovascular risk factors. Arch Intern Med. 2009;169(18):1718–1720
  • . Bakris GL, Fonseca VA, Sharma K, Wright EM. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int. 2009;75(12):1272–1277
  • . Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136–142
  • . Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–391
  • . Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;287(6):E1049–E1056
  • . Meyer C, Stumvoll M, Nadkarni V, . Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998;102(3):619–624
  • . Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;120:S1–S6
  • . Vallon V, Platt KA, Cunard R, . SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–112
  • . Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest. 1993;91(4):1810–1815
  • . Chen J, Williams S, Ho S, . Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010;1(2):57–92
  • . Calado J, Santer R, Rueff J. Effect of kidney disease on glucose handling (including genetic defects). Kidney Int Suppl. 2011;79;120: S7–S13
  • . Pfister M, Whaley JM, Zhang L, List JF. Inhibition of SGLT2: a novel strategy for treatment of type 2 diabetes mellitus. Clin Pharmacol Ther. 2011;89(4):621–625
  • . Zhang L, Feng Y, List J, Kasichayanula S, Pfister M. Dapagliflozin treatment in patients with different stages of type 2 diabetes mellitus: effects on glycaemic control and body weight. Diabetes Obes Metab. 2010;12(6):510–516
  • . List JF, Whaley JM. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans. Kidney Int Suppl. 2011;120:S20–S27
  • . U.S. FDA Approves INVOKANA™ (Canagliflozin) for the Treatment of Adults with Type 2 Diabetes [press release], http://www.jnj.com/connect/news/product/us-fda-approves-invokana-canagliflozin-for-the-treatment-of-adults-with-type-2-diabetes. Accessed April 12, 2013
  • . Stenlof K, Cefalu WT, Kim KA, . Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–382
  • . Wilding JP, Mathieu C, Vercruysse F, . Canagliflozin (CANA), a sodium glucose co-transporter 2 inhibitor, improves glycemic control and reduces body weight in subjects with type 2 diabetes (T2D) inadequately controlled with metformin (MET) and sulfonylurea (SU) [abstract]. Diabetes. 2012;61( suppl 1):A262
  • . Matthew D, Fulcher GR, Perkovic V, . Efficacy and safety of canagliflozin, an inhibitor of sodium glucose co-transporter 2, added on to insulin therapy with or without oral agents in type 2 diabetes. Presented at: European Association for the Study of Diabetes; October 1–5, 2012; Berlin, Germany
  • . Cefalu WT, Leiter LA, Niskanen L, . Efficacy and safety of canagliflozin, a sodium glucose co-transporter 2 inhibitor, compared with glimepiride in patients with type 2 diabetes on background metformin [abstract]. Diabetes. 2012;61( suppl 1A):LB10
  • . Schernthaner G, Gross JL, Rosenstock J, . Canagliflozin Compared With Sitagliptin for Patients With Type 2 Diabetes Who Do Not Have Adequate Glycemic Control With Metformin Plus Sulfonylurea: A 52-week randomized trial [published online ahead of print April 5, 2013]. Diabetes Care
  • . Invokana® [package insert]. Titusville, NJ: Janssen Pharmaceuticals; 2013
  • . Endocrinologic and Metabolic Drugs Advisory Committee. Canagliflozin as an adjunctive treatment to diet and exercise alone or co-administered with other antihyperglycemic agents to improve glycemic control in adults with type 2 diabetes mellitus, http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM334551.pdf. Accessed April 17, 2013
  • . European Medicines Agency recommends authorisation of novel treatment for type 2 diabetes [press release]. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2012/04/news_detailJ)01499jsp&mid=WC0b01ac058004d5c1. Accessed December 12, 2012
  • . Foxiga [summary of product characteristics]. Middlesex, UK: Bristol-Myers Squibb/AstraZeneca; 2012
  • . AstraZeneca and Bristol-Myers Squibb receive complete response letter from US Food and Drug Administration for dapagliflozin [press release]. http://www.astrazeneca.com/Media/Press-releases/Article/19012012-AstraZeneca-Bristol-Myers-Squibb-receive-CRL-for-dapagliflozin. Accessed February 12, 2013
  • . Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–2224
  • . Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223–2233
  • . Strojek K, Yoon KH, Hruba V, . Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2011;13(10):928–938
  • . Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA1c, body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–1478
  • . Wilding JPH, Woo V, Soler NG, . Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin. Ann Intern Med. 2012;156(6):405–415
  • . Nauck MA, Del Prato S, Meier JJ, . Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–2022
  • . Henry RR, Murray AV, Marmolejo MH, . Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract. 2012;66(5):446–456
  • . US Food and Drug Administration; US Department of Health and Human Services. FDA Briefing Document. NDA 202293 dapagliflozin tablets, 5 and 10 mg sponsor: Bristol-Myers Squibb, http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM262994.pdf. Accessed December 10, 2012
  • . Bailey CJ. SGLT2 inhibitors: glucuretic treatment for type 2 diabetes. Br J Diabetes Vasc Dis. 2010;10:193–199
  • . Bolinder J, Ljunggren O, Kullberg J, . Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–1031
  • . Ptaszynska A, Johnsson KM, Apanovitch AM, Sugg JE, Parikh SJ, List JF. Safety of dapagliflozin in clinical trials for T2DM [abstract]. Diabetes. 2012;61( suppl 1):A258
  • . Boehringer Ingelheim and Eli Lilly and Company submit new drug application to FDA for empagliflozin, an investigational type 2 diabetes treatment [press release], http://us.boehringeringelheim.com/news_events/press_releases/press_release_archive/2013/03-25-13-boehringer-ingelheim-eli-lilly-and-company-drug-application-FDA-empagliflozin-investigational-type-2-diabetes-treatment.html. Accessed April 12, 2013
  • . Boehringer Ingelheim and Eli Lilly and Company announce acceptance of European marketing authorisation application for investigational Type 2 Diabetes treatment empagliflozin [press release]. http://www.boehringeringelheim.com/news/news_releases/press_releases/2013/26_march_2013_empagliflozin.html. Accessed April 12, 2013
  • . Ferrannini E, Seman L, Seewaldt-Becker E, . A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes [published online ahead of print March 4, 2013]. Diabetes Obes Metab
  • . Astellas Pharma Inc.: Submits Application for Marketing Approval of Ipragliflozin (ASP1941), SGLT2 Inhibitor for Treatment of Type 2 Diabetes, in Japan [press release], http://www.astellas.com/en/corporate/news/pdf/130313_l_Eg.pdf. Accessed April 12, 2013
  • . Wilding JP, Ferrannini E, Fonseca VA, . Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab. 2013;15(5):403–409
  • . Zambrowicz B, Freiman J, Brown PM, . LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther. 2012;92(2):158–169
  • . Kalgutkar AS, Tugnait M, Zhu T, . Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus. Drug Metab Dispos. 2011;39(9):1609–1619
  • . Yamamoto K, Uchida S, Kitano K, . TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity. Br J Pharmacol. 2011;164(1):181–191
  • . Suzuki M, Honda K, Fukazawa M, . Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice. J Pharmacol Exp Ther. 2012;341(3):692–701
  • . Overton HA, Fyfe MC, Reynet C. GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol. 2008;153( suppl 1):S76–S81
  • . Chu ZL, Carroll C, Chen R, . N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol Endocrinol. 2010;24(1):161–170
  • . Chu ZL, Carroll C, Alfonso J, . A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology. 2008;149(5):2038–2047
  • . Katz LB, Gambale JJ, Rothenberg PL, . Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, double-blind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes Metab. 2012;14(8):709–716
  • . Nunez DJ, Bush MA, Collins DA, . Novel effects on lipids of GSK1292263, a GRP119 agonist, in type 2 diabetics [abstract]. Diabetes. 2012;61( suppl 1):A279
  • . Kebede MA, Alquier T, Latour MG, Poitout V. Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab. 2009;11 ( suppl 4):10–20
  • . Burant CF, Viswanathan P, Marcinak J, . TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2012;379(9824):1403–1411
  • . Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A Mikhailidis DP. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94(8):2692–2701
  • . Masuzaki H, Yamamoto H, Kenyon CJ, . Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003;112(1):83–90
  • . Rosenstock J, Banarer S, Fonseca VA . The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care. 2010;33(7):1516–1522
  • . Feig PU, Shah S, Hermanowski-Vosatka A, . Effects of an 11 beta-hydroxysteroid dehydrogenase type 1 inhibitor, MK-0916, inpatients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Obes Metab. 2011;13(6):498–504
  • . Matschinsky FM, Magnuson MA, Zelent D, . The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes. 2006;55(1):1–12
  • . Efanov AM, Barrett DG, Brenner MB, . A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005;146(9):3696–3701
  • . Bonadonna RC, Heise T, Arbet-Engels C, . Piragliatin (R04389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab. 2010;95(11):5028–5036
  • . Wilding JPH, Leonsson-Zachrisson M, Wessman C, Röshammar D, Johnsson E. Efficacy and safety of different dosing regimens of the glucokinase activator AZD1656 during 4-months in T2DM patients on metformin. Paper presented at: World Diabetes Congress; December 4–8, 2011; Dubai, United Arab Emirates. Abstract O-0618
  • . Meininger GE, Scott R, Alba M, . Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34(12):2560–2566
  • . Ramanathan V, Vachharajani N, Patel R, Barbhaiyar. GKM-001, a liver-directed/pancreas-sparing glucokinase modulator (GKM), lowers fasting and post-prandial glucose without hypoglycemia in type 2 diabetic (T2D) patients [abstract]. Diabetes. 2012;61( suppl 1):A76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.