137
Views
17
CrossRef citations to date
0
Altmetric
Clinical Features

Neutrophil Gelatinase Associated Lipocalin in Acute Kidney Injury

, MD, , MD, , MD & , MD
Pages 82-93 | Published online: 13 Mar 2015

References

  • . Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63(5):1714–1724
  • . Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 2004;24(3):307–315
  • . Mori K, Lee HT, Rapoport D, . Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115(3):610–621
  • . Schmidt-Ott KM, Mori K, Li JY, . Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407–413
  • . Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007;71(10):967–970
  • . Hirsch R, Dent C, Pfriem H, . NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22(12):2089–2095
  • . Mishra J, Dent C, Tarabishi R, . Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–1238
  • . Shapiro NI, Trzeciak S, Hollander JE, . The diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin in the prediction of acute kidney injury in emergency department patients with suspected sepsis. Ann Emerg Med. 2010;56(1):52–59, el
  • . Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16(1):49–54
  • . Devarajan P. Emerging biomarkers of acute kidney injury. Contrib Nephrol. 2007;156:203–212
  • . Wu Y, Su T, Yang L, Zhu SN, Li XM. Urinary neutrophil gelatinase-associated lipocalin: a potential biomarker for predicting rapid progression of drug-induced chronic tubulointerstitial nephritis. Am J Med Sci. 2010;339(6):537–542
  • . Vaidya VS, Waikar SS, Ferguson MA, . Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1(3):200–208
  • . NGAL Rapid ELISA Kit (KIT 037) [package insert]. Gentofte, Denmark: BioPorto Diagnostics A/S; 2010. http://ngal.com/media/52188/kit_037_ifu_ruo.pdf. Accessed October 21, 2012
  • . Nickolas TL, O'Rourke MJ, Yang J, . Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148(11):810–819
  • . Kusaka M, Kuroyanagi Y, Mori T, . Serum neutrophil gelatinase-associated lipocalin as a predictor of organ recovery from delayed graft function after kidney transplantation from donors after cardiac death. Cell Transplant. 2008;17(1–2):129–134
  • . Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–292
  • . Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, . NGAL (neutrophil gelatinase-associated lipocalin) and cystatin C: are they good predictors of contrast nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine? Int J Cardiol. 2008;127(2):290–291
  • . Trachtman H, Christen E, Cnaan A, ; Investigators of the HUS-SYNSORB Pk Multicenter Clinical Trial. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol. 2006;21(7):989–994
  • . Wagener G, Jan M, Kim M, . Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105(3):485–491
  • . Brunner HI, Mueller M, Rutherford C, . Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus. Arthritis Rheum. 2006;54(8):2577–2584
  • . Bolignano D, Coppolino G, Campo S, . Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease. Am J Nephrol. 2007;27(4):373–378
  • . Bolignano D, Coppolino G, Campo S, . Urinary neutrophil gelatinase-associated lipocalin (NGAL) is associated with severity of renal disease in proteinuric patients. Nephrol Dial Transplant. 2008;23(1):414–416
  • . Ding H, He Y, Li K, . Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol. 2007;123(2):227–234
  • . Thrailkill KM, Moreau CS, Cockrell GE, . Disease and gender-specific dysregulation of NGAL and MMP-9 in type 1 diabetes mellitus. Endocrine. 2010;37(2):336–343
  • . Ferguson MA, Vaidya VS, Waikar SS, . Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int. 2010;77(8):708–714
  • . Yilmaz A, Sevketoglu E, Gedikbasi A, . Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol. 2009;24(12):2387–2392
  • . Paragas N, Nickolas TL, Wyatt C, . Urinary NGAL marks cystic disease in HIV-associated nephropathy. J Am Soc Nephrol. 2009;20(8):1687–1692
  • . Wheeler DS, Devarajan P, Ma Q, . Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297–1303
  • . Zappitelli M, Washburn KK, Arikan AA, . Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11(4):R84
  • . Nishida M, Kawakatsu H, Okumura Y, Hamaoka K. Serum and urinary neutrophil gelatinase-associated lipocalin levels in children with chronic renal diseases. Pediatr Int. 2010;52(4):563–568
  • . Malyszko J, Bachorzewska-Gajewska H, Poniatowski B, Malyszko JS, Dobrzycki S. Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease. Ren Fail. 2009;31(10):910–919
  • . Meijer E, Boertien WE, Nauta FL, . Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis. 2010;56(5):883–895
  • . Przybylowski P, Malyszko J, Malyszko JS. Serum neutrophil gelatinase-associated lipocalin correlates with kidney function in heart allograft recipients. Transplant Proc. 2010;42(5):1797–1802
  • . Ramesh G, Kwon O, Ahn K. Netrin-1: a novel universal biomarker of human kidney injury. Transplant Proc. 2010;42(5):1519–1522
  • . Perry TE, Muehlschlegel JD, Liu KY, ; CABG Genomics Investigators. Plasma neutrophil gelatinase-associated lipocalin and acute postoperative kidney injury in adult cardiac surgical patients. Anesth Analg. 2010;110(6):1541–1547
  • . Mårtensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. 2010;36(8):1333–1340
  • . Kümpers P, Hafer C, Lukasz A, . Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury. Crit Care. 2010;14(1):R9
  • . Cruz DN, de Cal M, Garzotto F, . Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med. 2010;36(3):444–451
  • . Bagshaw SM, Bennett M, Haase M, . Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 2010;36(3):452–461
  • . Niemann CU, Walia A, Waldman J, . Acute kidney injury during liver transplantation as determined by neutrophil gelatinase-associated lipocalin. Liver Transpl. 2009;15(12):1852–1860
  • . Szewczyk M, Wielkoszyhski T, Zakliczyhski M, Zembala M. Plasma neutrophil gelatinase-associated lipocalin (NGAL) correlations with cystatin C, serum creatinine, and glomerular filtration rate in patients after heart and lung transplantation. Transplant Proc. 2009;41(8):3242–3243
  • . Constantin JM, Futier E, Perbet S, . Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study. J Crit Care. 2010;25(1):176, e1–6
  • . Hall IE, Yarlagadda SG, Coca SG, . IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol. 2010;21(1):189–197
  • . Malyszko J, Malyszko JS, Mysliwiec M. Serum neutrophil gelatinase-associated lipocalin correlates with kidney function in renal allograft recipients. Clin Transplant. 2009;23(5):681–686
  • . Capuano F, Goracci M, Luciani R, . Neutrophil gelatinase-associated lipocalin levels after use of mini-cardiopulmonary bypass system. Interact Cardiovasc Thorac Surg. 2009;9(5):797–801
  • . Siew ED, Ware LB, Gebretsadik T, . Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol. 2009;20(8):1823–1832
  • . Liangos O, Tighiouart H, Perianayagam MC, . Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers. 2009;14(6):423–431
  • . Haase M, Bellomo R, Devarajan P, . Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults. Ann Thorac Surg. 2009;88(1):124–130
  • . Haase-Fielitz A, Bellomo R, Devarajan P, . The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury. Nephrol Dial Transplant. 2009;24(11):3349–3354
  • . Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–882
  • . Cai L, Borowiec J, Xu S, Han W, Venge P. Assays of urine levels of HNL/NGAL in patients undergoing cardiac surgery and the impact of antibody configuration on their clinical performances. Clin Chim Acta. 2009;403(1–2):121–125
  • . Poniatowski B, Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in patients with chronic heart failure and coronary artery disease. Kidney Blood Press Res. 2009;32(2):77–80
  • . Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, Mysliwiec M. Neutrophil gelatinase-associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc. 2009;41(1):158–161
  • . Tuladhar SM, Püntmann VO, Soni M, Punjabi PP, Bogle RG. Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase-associated lipocalin after cardiopulmonary bypass. J Cardiovasc Pharmacol. 2009;53(3):261–266
  • . Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. A comparison of urinary neutrophil gelatinase-associated lipocalin in patients undergoing on- versus off-pump coronary artery bypass graft surgery. J Cardiothorac Vase Anesth. 2009;23(2):195–199
  • . Bolignano D, Lacquaniti A, Coppolino G, . Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(2):337–344
  • . Haase-Fielitz A, Bellomo R, Devarajan P, . Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery-a prospective cohort study. Crit Care Med. 2009;37(2):553–560
  • . Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am J Kidney Dis. 2008;52(3):425–433
  • . Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res. 2008;31(4):255–258
  • . Ling W, Zhaohui N, Ben H, . Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract. 2008;108(3):c176–181
  • . Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrology (Carlton). 2008;13(2):153–156
  • . Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. Increased incidence of acute kidney injury with aprotinin use during cardiac surgery detected with urinary NGAL. Am J Nephrol. 2008;28(4):576–582
  • . Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, . Could neutrophil-gelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press Res. 2007;30(6):408–415
  • . Parikh CR, Mishra J, Thiessen-Philbrook H, . Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203
  • . Schaub S, Nickerson P, Rush D, . Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am J Transplant. 2009;9(6):1347–1353
  • . Zhao C, Ozaeta P, Fishpaugh J, . Structural characterization of glycoprotein NGAL, an early predictive biomarker for acute kidney injury. Carbohydr Res. 2010;345(15):2252–2261
  • . Haase M, Devarajan P, Haase-Fielitz A, . The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–1761
  • . Nickolas TL, Schmidt-Ott KM, Canetta P, . Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59(3):246–255
  • . Parikh CR, Coca SG, Thiessen-Philbrook H, ; TRIBE-AKI Consortium. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Neph. 2011;22(9):1748–1757
  • . Parikh CR, Devarajan P, Zappitelli M, ; TRIBE-AKI Consortium. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22(9):1737–1747
  • . Pedersen KR, Ravn HB, Povlsen JV, Schmidt MR, Erlandsen EJ, Hjortdal VE. Failure of remote ischemic preconditioning to reduce the risk of postoperative acute kidney injury in children undergoing operation for complex congenital heart disease: a randomized single-center study. J Thorac Cardiovasc Surg. 2012;143(3):576–583
  • . Srisawat N, Murugan R, Lee M, ; Genetic and Inflammatory Markers of Sepsis (GenIMS) Study Investigators. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011;80(5):545–552
  • . Srisawat N, Wen X, Lee M, . Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol. 2011;6(8):1815–1823
  • . Przybylowski P, Malyszko J, Malyszko J. Kidney function assessed by eGFR, cystatin C and NGAL (neutrophil gelatinase-associated lipocalin) in relation to age in heart allograft recipients. Med Sci Monit. 2010;16(9):CR440–444
  • . McIlroy DR, Wagener G, Lee HT. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin J Am Soc Nephrol. 2010;5(2):211–219
  • . Boldt J, Suttner S, Brosch C, Lehmann A, Röhm K, Mengistu A. Cardiopulmonary bypass priming using a high dose of a balanced hydroxyethyl starch versus an albumin-based priming strategy. Anesth Analg. 2009;109(6):1752–1762
  • . Cruz DN, Soni S, Ronco C. NGAL and cardiac surgery-associated acute kidney injury [commentary]. Am J Kidney Dis. 2009;53(3):565–566; author reply 566
  • . Haase M, Haase-Fielitz A, Bellomo R, . Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47
  • . Boldt J, Brosch Ch, Röhm K, Lehmann A, Mengistu A, Suttner S. Is albumin administration in hypoalbuminemic elderly cardiac surgery patients of benefit with regard to inflammation, endothelial activation, and long-term kidney function? Anesth Analg. 2008;107(5):1496–1503
  • . Boldt J, Suttner S, Brosch C, Lehmann A, Röhm K, Mengistu A. The influence of a balanced volume replacement concept on inflammation, endothelial activation, and kidney integrity in elderly cardiac surgery patients. Intensive Care Med. 2009;35(3):462–470
  • . Bennett M, Dent CL, Ma Q, . Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3(3):665–673
  • . Boldt J, Brosch Ch, Röhm K, Papsdorf M, Mengistu A. Comparison of the effects of gelatin and a modern hydroxyethyl starch solution on renal function and inflammatory response in elderly cardiac surgery patients. Br J Anaesth. 2008;100(4):457–464
  • . Aström-Olsson K, Hedström E, Hultén LM, . Dissociation of the inflammatory reaction following PCI for acute myocardial infarction. J Invasive Cardiol. 2007;19(11):452–456
  • . Boldt J, Brosch C, Ducke M, Papsdorf M, Lehmann A. Influence of volume therapy with a modern hydroxyethylstarch preparation on kidney function in cardiac surgery patients with compromised renal function: a comparison with human albumin. Crit Care Med. 2007;35(12):2740–2746
  • . Jönsson P, Ståhl ML, Ohlsson K. Extracorporeal circulation causes release of neutrophil gelatinase-associated lipocalin (NGAL). Mediators Inflamm. 1999;8(3):169–171
  • . Choi YS, Shim JK, Kim JC, . Effect of remote ischemic preconditioning on renal dysfunction after complex valvular heart surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2011;142(1):148–154
  • . Damman K, Van Veldhuisen DJ, Navis G, . Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart. 2010;96(16):1297–1302
  • . Zografos T, Haliassos A, Korovesis S, Giazitzoglou E, Voridis E, Katritsis D. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am J Cardiol. 2009;104(7):917–920
  • . Damman K, van Veldhuisen DJ, Navis G, Voors AA Hillege HL. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail. 2008;10(10):997–1000
  • . Giaginis C, Zira A, Katsargyris A, Klonaris C, Theocharis S. Clinical implication of plasma neutrophil gelatinase-associated lipocalin (NGAL) concentrations in patients with advanced carotid atherosclerosis. Clin Chem Lab Med. 2010;48(7):1035–1041
  • . Maisel AS, Mueller C, Fitzgerald R, . Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–851
  • . Shapiro NI, Trzeciak S, Hollander JE, . A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med. 2009;37(1):96–104
  • . Porta C, Paglino C, De Amici M, . Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney Int. 2010;77(9):809–815
  • . Rubinstein T, Pitashny M, Levine B, . Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis. Rheumatology (Oxford). 2010;49(5):960–971
  • . Malyszko J, Malyszko JS, Koc-Zorawska E, Kozminski P, Mysliwiec M. Neutrophil gelatinase-associated lipocalin in dialyzed patients is related to residual renal function, type of renal replacement therapy and inflammation. Kidney Blood Press Res. 2009;32(6):464–469
  • . Hinze CH, Suzuki M, Klein-Gitelman M, . Neutrophil gelatinase-associated lipocalin is a predictor of the course of global and renal childhood-onset systemic lupus erythematosus disease activity. Arthritis Rheum. 2009;60(9):2772–2781
  • . Huynh TK, Bateman DA, Parravicini E, . Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr Res. 2009;66(5):528–532
  • . Yang YH, He XJ, Chen SR, Wang L, Li EM, Xu LY. Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocrine. 2009;36(1):45–51
  • . Bolignano D, Lacquaniti A, Coppolino G, . Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32(2):91–98
  • . Malyszko J, Bachorzewska-Gajewska H, Sitniewska E, Malyszko JS, Poniatowski B, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in non-diabetic patients with stage 2–4 chronic kidney disease. Ren Fail. 2008;30(6):625–628
  • . Suzuki M, Wiers KM, Klein-Gitelman MS, . Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis. Pediatr Nephrol. 2008;23(3):403–412
  • . Sundaram N, Bennett M, Wilhelm J, . Biomarkers for early detection of sickle nephropathy. Am J Hematol. 2011;86(7):559–566
  • . Ibernon M, Moreso F, Moreno JM, . Low serum mannose-binding lectin as a risk factor for new onset diabetes mellitus after renal transplantation. Transplantation. 2009;88(2):272–278
  • . Lebkowska U, Malyszko J, Lebkowska A, . Neutrophil gelatinase-associated lipocalin and cystatin C could predict renal outcome in patients undergoing kidney allograft transplantation: a prospective study. Transplant Proc. 2009;41(1):154–157
  • . Lollike K, Kjeldsen L, Sengeløv H, Borregaard N. Lysozyme in human neutrophils and plasma. A parameter of myelopoietic activity. Leukemia. 1995;9(1):159–164
  • . Marti J, Fuster J, Hotter G, . Serum neutrophil gelatinase-associated lipocalin in patients with colorectal liver metastases: preliminary results of an exploratory prospective study. Int J Biol Markers. 2010;25(1):21–26
  • . Mishra J, Ma Q, Kelly C, . Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol. 2006;21(6):856–863
  • . Oberbauer R. Biomarkers-a potential route for improved diagnosis and management of ongoing renal damage. Transplant Proc. 2008;40( 10 suppl):S44–S47
  • . Parikh CR, Jani A, Mishra J, . Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006;6(7):1639–1645
  • . Portal AJ, McPhail MJ, Bruce M, . Neutrophil gelatinase-associated lipocalin predicts acute kidney injury in patients undergoing liver transplantation. Liver Transpl. 2010;16(11):1257–1266
  • . Schaub S, Mayr M, Hönger G, . Detection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology Transplantation. 2007;84(1):104–112
  • . Gaspari F, Cravedi P, Mandalà M, . Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study. Nephron Clin Pract. 2010;115(2):c154–160
  • . Bagshaw SM, George C, Bellomo R; ANZICS Database Management Committee. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol Dial Transplant. 2008;23(5):1569–1574
  • . Bagshaw SM, Uchino S, Bellomo R, ; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007;2(3):431–439
  • . Neveu H, Kleinknecht D, Brivet F, Loirat P, Landais P. Prognostic factors in acute renal failure due to sepsis: results of a prospective multicentre study. The French Study Group on Acute Renal Failure. Nephrol Dial Transplant. 1996;11(2):293–299
  • . Lopes JA, Jorge S, Resina C, . Acute kidney injury inpatients with sepsis: a contemporary analysis. Int J Infect Dis. 2009;13(2):176–181
  • . Oppert M, Engel C, Brunkhorst FM, ; German Competence Network Sepsis (Sepnet). Acute renal failure in patients with severe sepsis and septic shock-a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant. 2008;23(3):904–909
  • . Uchino S, Kellum JA, Bellomo R, ; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–818
  • . Bagshaw SM, George C, Bellomo R; ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12(2):R47
  • . Hoste EA, Lameire NH, Vanholder RC, Benoit DD, Decruyenaere JM, Colardyn FA. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14(4):1022–1030
  • . Yegenaga I, Hoste E, Van Biesen W, . Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. Am J Kidney Dis. 2004;43(5):817–824
  • . de Geus HR, Bakker J, Lesaffre EM, le Noble JL. Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med. 2011;183(7):907–914
  • . Makris K, Markou N, Evodia E, . Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47(1):79–82
  • . de Geus HR, Betjes MG, Bakker J. Neutrophil gelatinase-associated lipocalin clearance during veno-venous continuous renal replacement therapy in critically ill patients. Intensive Care Med. 2010;36(12):2156–2157
  • . Wang Y, Lam KS, Kraegen EW, . Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem. 2007;53(1):34–41
  • . Yan QW, Yang Q, Mody N, . The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007;56(10):2533–2540
  • . Hemdahl AL, Gabrielsen A, Zhu C, . Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vase Biol. 2006;26(1):136–142
  • . Elneihoum AM, Falke P, Hedblad B, Lindgärde F, Ohlsson K. Leukocyte activation in atherosclerosis: correlation with risk factors. Atherosclerosis. 1997;131(1):79–84
  • . Yndestad A, Landrø L, Ueland T, . Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30(10):1229–1236
  • . Dent CL, Ma Q, Dastrala S, . Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11(6):R127
  • . Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104(4):343–348
  • . Ghotkar SV, Grayson AD, Fabri BM, Dihmis WC, Pullan DM. Preoperative calculation of risk for prolonged intensive care unit stay following coronary artery bypass grafting. J Cardiothorac Surg. 2006;1:14
  • . Stafford-Smith M, Podgoreanu M, Swaminathan M, ; Perioperative Genetics and Safety Outcomes Study (PEGASUS) Investigative Team Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. Am J Kidney Dis. 2005;45(3):519–530
  • . Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004;114(1): 5–14
  • . Garwood S. Renal insufficiency after cardiac surgery. Semin Cardiothorac Vasc Anesth. 2004;8(3):227–241
  • . Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005;365(9457):417–430
  • . Bove T, Calabrò MG, Landoni G, . The incidence and risk of acute renal failure after cardiac surgery. J Cardiothorac Vase Anesth. 2004;18(4):442–445
  • . Ho J, Lucy M, Krokhin O, . Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case-control study. Am J Kidney Dis. 2009;53(4):584–595
  • . Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization: The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med. 1998;128(3):194–203
  • . Lassnigg A, Schmidlin D, Mouhieddine M, . Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–1605
  • . Loef BG, Epema AH, Smilde TD, . Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J Am Soc Nephrol. 2005;16(1):195–200
  • . Ryckwaert F, Boccara G, Frappier JM, Colson PH. Incidence, risk factors, and prognosis of a moderate increase in plasma creatinine early after cardiac surgery. Crit Care Med. 2002;30(7):1495–1498
  • . Zanardo G, Michielon P, Paccagnella A, . Acute renal failure in the patient undergoing cardiac operation: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107(6):1489–1495
  • . Fortescue EB, Bates DW, Chertow GM. Predicting acute renal failure after coronary bypass surgery: cross-validation of two risk-stratification algorithms. Kidney Int. 2000;57(6):2594–2602
  • . Turtle KR, Worrall NK, Dahlstrom LR, Nandagopal R, Kausz AT, Davis CL. Predictors of ARF after cardiac surgical procedures. Am J Kidney Dis. 2003;41(1):76–83
  • . Mehta RH, Newby LK, Patel Y, ; CRUSADE Investigators. The impact of emergency department structure and care processes in delivering care for non-ST-segment elevation acute coronary syndromes. Am Heart J. 2006;152(4):648–660
  • . Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32
  • . Murray PT, Le Gall JR, Dos Reis Miranda D, Pinsky MR, Tetta C. Physiologic endpoints (efficacy) for acute renal failure studies. Curr Opin Crit Care. 2002;8(6):519–525
  • . Rosner MH, Bolton WK. Renal function testing. Am J Kidney Dis. 2006;47(1):174–183
  • . Billings FT IV, Ball SK, Roberts LJ II, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50(11):1480–1487
  • . Bolognese L, Falsini G, Schwenke C, . Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial). Am J Cardiol. 2012;109(1):67–74
  • . Borzecki AM, Cevasco M, Chen Q, Shin M, Itani KM, Rosen AK. How valid is the AHRQ Patient Safety Indicator “postoperative physiologic and metabolic derangement”? J Am Coll Surg. 2011;212(6):968–976, e1–2
  • . Briguori C, Visconti G, Ricciardelli B, Condorelli G, REMEDIAL II Investigators. Renal insufficiency following contrast media administration trial II (REMEDIAL II): RenalGuard system in high-risk patients for contrast-induced acute kidney injury: rationale and design. EuroIntervention. 2011;6(9):1117–1122
  • . Clec'h C, Gonzalez F, Lautrette A, . Multiple-center evaluation of mortality associated with acute kidney injury in critically ill patients: a competing risks analysis. Crit Care. 2011;15(3):R128
  • . Colpaert K, Hoste EA, Steurbaut K, . Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit Care Med. 2012;40(4):1164–1170
  • . Haznedar R, Aki SZ, Akdemir OU, . Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging. 2011;38(6):1046–1053
  • . Jung JY, Park BH, Hong SB, . Acute kidney injury in critically ill patients with pandemic influenza A pneumonia 2009 in Korea: a multicenter study. J Crit Care. 2011;26(6):577–585
  • . Karkouti K, Wijeysundera DN, Yau TM, . Advance targeted transfusion in anemic cardiac surgical patients for kidney protection: an unblinded randomized pilot clinical trial. Anesthesiology. 2012;116(3):613–621
  • . Karlsberg RP, Dohad SY, Sheng R; Iodixanol Peripheral Computed Tomographic Angiography Study Investigator Panel. Contrast medium-induced acute kidney injury: comparison of intravenous and intraarterial administration of iodinated contrast medium. J Vase Interv Radiol. 2011;22(8):1159–1165
  • . Katagiri D, Doi K, Honda K, . Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann Thorac Surg. 2012;93(2):577–583
  • . Li S, Krawczeski CD, Zappitelli M, ; TRIBE-AKI Consortium. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–1499
  • . Li XM, Cong HL, Li TT, He LJ, Zhou YJ. Impact of benazepril on contrast-induced acute kidney injury for patients with mild to moderate renal insufficiency undergoing percutaneous coronary intervention. Chin Med J. 2011;124(14):2101–2106
  • . Libório AB, Abreu KL, Silva GB Jr, . Predicting hospital mortality in critically ill cancer patients according to acute kidney injury severity. Oncology. 2011;80(3–4):160–166
  • . Lombardi R, Nin N, Lorente JA, ; VENTILA Group. An assessment of the Acute Kidney Injury Network creatinine-based criteria in patients submitted to mechanical ventilation. Clin J Am Soc Nephrol. 2011;6(7):1547–1555
  • . Maioli M, Toso A, Leoncini M, Micheletti C, Bellandi F. Effects of hydration in contrast-induced acute kidney injury after primary angioplasty: a randomized, controlled trial. Circ Cardiovasc Interv. 2011;4(5):456–462
  • . Ostermann M, Chang RW. Impact of different types of organ failure on outcome in intensive care unit patients with acute kidney injury. J Crit Care. 2011;26(6):635, e1–e5, e10
  • . Patel UD, Garg AX, Krumholz HM, ; Translational Research Investigating Biomarker Endpoints in Acute Kidney Injury (TRIBE-AKI) Consortium. Preoperative serum brain natriuretic peptide and risk of acute kidney injury after cardiac surgery. Circulation. 2012;125(11):1347–1355
  • . Pettilä V, Webb SA, Bailey M, Howe B, Seppelt IM, Bellomo R. Acute kidney injury inpatients with influenza A(H1N1) 2009. Intensive Care Med. 2011;37(5):763–767
  • . Piccinni P, Cruz DN, Gramaticopolo S, ; NEFROINT Investigators. Prospective multicenter study on epidemiology of acute kidney injury in the ICU: a critical care nephrology Italian collaborative effort (NEFROINT). Minerva Anestesiol. 2011;77(11):1072–1083
  • . Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, . Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial. 2011;15(6):556–564
  • . Zappitelli M, Krawczeski CD, Devarajan P, ; TRIBE-AKI Consortium. Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int. 2011;80(6):655–662
  • . Koyner JL, Bennett MR, Worcester EM, . Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74(8):1059–1069
  • . Bellomo, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative Workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–R212
  • . Di Grande A, Giuffrida C, Carpinteri G, . Neutrophil gelatinase-associated lipocalin: a novel biomarker for the early diagnosis of acute kidney injury in the emergency department. Eur Rev Med Pharmacol Sci. 2009;13(3):197–200
  • . Preda L, Agazzi A, Raimondi S, . Effect on renal function of an iso-osmolar contrast agent in patients with monoclonal gammopathies. Eur Radiol. 2011;21(1):63–69
  • . McCullough PA, Sandberg KR. Epidemiology of contrast-induced nephropathy. Rev Cardiovasc Med. 2003;(4 suppl 5):S3–S9
  • . Garni AS, Garovic VD. Contrast nephropathy after coronary angiography [published correction appears in Mayo Clin Proc. 2004;79(3):432. Dosage error in article text]. Mayo Clin Proc. 2004;79(2):211–219
  • . Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–936
  • . Marenzi G, Lauri G, Assanelli E, . Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol. 2004;44(9):1780–1785
  • . Awal A, Ahsan SA, Siddique MA, . Effect of hydration with or without n-acetylcysteine on contrast induced nephropathy in patients undergoing coronary angiography and percutaneous coronary intervention. Mymensingh Med J. 2011;20(2):264–269
  • . Bosso JA, Nappi J, Rudisill C, . Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother. 2011;55(12):5475–5479
  • . Camilla R, Suzuki H, Daprà V, . Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol. 2011;6(8):1903–1911
  • . Cass RT, Brooks CD, Havrilla NA, . Pharmacokinetics and safety of single and multiple doses of ACHN-490 injection administered intravenously in healthy subjects. Antimicrob Agents Chemother. 2011;55(12):5874–5880
  • . Cox ZL, Nelsen CL, Waitman LR, McCoy JA, Peterson JF. Effects of clinical decision support on initial dosing and monitoring of tobramycin and amikacin. Am J Health Syst Pharm. 2011;68(7):624–632
  • . Ekberg H, van Gelder T, Kaplan B, Bernasconi C. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. Transplantation. 2011;92(1):82–87
  • . Farhat FS, Temraz S, Kattan J, . A phase II study of lipoplatin (liposomal cisplatin)/vinorelbine combination in HER-2/neu-negative metastatic breast cancer. Clin Breast Cancer. 2011;11(6):384–389
  • . Gálvez R, Luengo C, Cornejo R, . Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int J Antimicrob Agents. 2011;38(2):146–151
  • . Giovacchini G, Nicolas G, Freidank H, Mindt TL, Forrer F. Effect of amino acid infusion on potassium serum levels in neuroendocrine tumour patients treated with targeted radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2011;38(9):1675–1682
  • . Gonzalez D, García CD, Azócar M, . Growth of kidney-transplanted pediatric patients treated with sirolimus. Pediatr Nephrol. 2011;26(6):961–966
  • . Hanly LN, Chen N, Aleksa K, . N-acetylcysteine as a novel prophylactic treatment for ifosfamide-induced nephrotoxicity in children: translational pharmacokinetics. J Clin Pharmacol. 2012;52(1):55–64
  • . Heilman RL, Younan K, Wadei HM, . Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. Transplantation. 2011;92(7):767–773
  • . Jacobson PA, Schladt D, Israni A, ; DeKAF Investigators. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. Transplantation. 2012;93(6):624–631
  • . Kullar R, Leonard SN, Davis SL, . Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15–20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy. 2011;31(5):441–448
  • . Kurtz JE, Freyer G, Joly F, ; GINECO Group, France. Combined oral topotecan plus carboplatin in relapsed or advanced cervical cancer: a GINECO phase I-II trial. Anticancer Res. 2012;32(3):1045–1049
  • . Ludwig U, Riedel MK, Backes M, Imhof A, Muche R, Keller F. MESNA (sodium 2-mercaptoethanesulfonate) for prevention of contrast medium-induced nephrotoxicity - controlled trial. Clin Nephrol. 2011;75(4):302–308
  • . Manito N, Rábago G, Palomo J, . Improvement in chronic renal failure after mycophenolate mofetil introduction and cyclosporine dose reduction: four-year results from a cohort of heart transplant recipients. Transplant Proc. 2011;43(7):2699–2706
  • . Manolakopoulos S, Striki A, Deutsch M, . Long-term adefovir plus lamivudine therapy does not decrease creatinine clearance in HBeAg-negative chronic hepatitis B patients. Liver Int. 2011;31(10):1525–1532
  • . Sabry NA, Habib EE. Zoledronic acid and clodronate in the treatment of malignant bone metastases with hypercalcaemia; efficacy and safety comparative study. Med Oncol. 2011;28(2):584–590
  • . Sato S, Fujiwara H, Oishi T, . Evaluation of a formula for individual dosage of nedaplatin based on renal function. Cancer Chemother Pharmacol. 2012;69(3):599–603
  • . Schmeding M, Kiessling A, Neuhaus R, . Mycophenolate mofetil monotherapy in liver transplantation: 5-year follow-up of a prospective randomized trial. Transplantation. 2011;92(8):923–929
  • . Shin DH, Choi DJ, Youn TJ, . Comparison of contrast-induced nephrotoxicity of iodixanol and iopromide in patients with renal insufficiency undergoing coronary angiography. Am J Cardiol. 2011;108(2):189–194
  • . Stathopoulos GP, Antoniou D, Dimitroulis J, Stathopoulos J, Marosis K, Michalopoulou P. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol. 2011;68(4):945–950
  • . Zengin E, Sarper N, Kihç SC. Piperacillin/tazobactam monotherapy versus piperacillin/tazobactam plus amikacin as initial empirical therapy for febrile neutropenia in children with acute leukemia. Pediatr Hematol Oncol. 2011;28(4):311–320
  • . Murugan R, Kellum JA. Acute kidney injury: what's the prognosis? Nat Rev Nephrol. 2011;7(4):209–217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.