301
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Botrytis cinerea isolates collected from grapes present different requirements for conidia germination

, &
Pages 287-295 | Accepted 15 Jan 2009, Published online: 20 Jan 2017

LITERATURE CITED

  • Alfonso C, Raposo R, Melgarejo P. 2000. Genetic diversity in Botrytis cinerea populations on vegetable crops in green-houses in southeastern Spain. Plant Pathol 49:243–251.
  • Barhoom S, Sharon A. 2004. cAMP regulation of “pathogenic” and “saprophytic” fungal spore germination. Fungal Genet Biol 41:317–326.
  • ———, ———. 2007. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol 44:32–43.
  • Brengues M, Pintard L, Lapeyre B. 2002. mRNA decay is rapidly induced after spore germination of Saccharomyces cerevisiae. J Biol Chem 277:40505–40512.
  • Brodie IDS, Blakeman JP. 1976. Competition for exogenous substrates in vitro by leaf surface micro-organisms and germination of conidia of Botrytis cinerea. Physiol Pl Pathol 9:227–239.
  • Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B, Tudzynski P. 1994. Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Genet 25:445–450.
  • Calpas JT, Konschuh MN, Toews CC, Tewari JP. 2006. Relationships among isolates of Botrytis cinerea collected from greenhouses and field locations in Alberta, based on RAPD analysis. Can J Plant Pathol 28:109–124.
  • Chang MHK, Chae S, Han DM, Jahng KY. 2004. The GanB Gα-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167:1305–1315.
  • Chardonnet CO, Sams CE, Trigiano RN, Conway WS. 2000. Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology 90:769–774.
  • Coertze S, Holz G. 2001. Germination and establishment of infection on grape berries by single airborne conidia of Botrytis cinerea. Pl Dis 85:668–677.
  • Cotoras M, Silva E. 2005. Differences in the initial events of infection of Botrytis cinerea strains isolated from tomato and grape. Mycologia 97:485–492.
  • d’Enfert C. 1997. Fungal spore germination; insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163–172.
  • ———, Bonini BM, Zapella PDA, Fontaine T, da Silva AM, Terenzi HF. 1999. Neutral trehalases catalyse intracellular trehalase breakdown in filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:417–484.
  • Divon HH, Fluhr R. 2007. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett 166:65–74.
  • Doehlemann G, Molitor F, Hahn M. 2005. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42:601–610.
  • ———, Berndt P, Hahn M. 2006a. Different signally pathways involving Gα protein, cAMP and MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–835.
  • ———, ———, ———. 2006b. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152:2625–2634.
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356.
  • Epton H, Richmond DV. 1980. Formation, structure and germination of conidia. In: Coley-Smith JR, Verhoeff K, Jarvis WR, eds. The biology of Botrytis. New York: Academic Press. p 41–81.
  • Fillinger S, Chaveroche MK, Shimuzu K, Keller N, d’Enfert C. 2002. cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44:1001–1016.
  • Filonow AB. 2001. Butyl acetate and yeasts interact in adhesion and germination of Botrytis cinerea conidia in vitro and in fungal decay of golden delicious apple. J Chem Ecol 27:831–844.
  • ———. 2002. Mycoactive acetate esters from apple fruit stimulate adhesion and germination of conidia of the gray mold fungus. J Agric Food Chem 50:3137–42.
  • Fourie JF, Holz G. 1997. Effects of fruit and pollen exudates on growth of Botrytis cinerea and infection of plum and nectarines fruit. Pl Dis 82:165–170.
  • Fournier E, Giraud T. 2008. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble. J Evol Biol 21:122–132.
  • Giraud T, Fortini D, Levis C, Leroux P, Brygoo Y. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea)and transposable elements reveal two sympatric species. Mol Biol Evol 14:1177–1185.
  • Hatanaka M, Shimoda C. 2001. The cyclic AMP/PKA signal pathway is required for initiation of spore germination in Schizosaccharomyces pombe. Yeast 18:207–217.
  • Hreman PK, Rine J. 1997. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. EMBO J 16:6171–6181.
  • Kerssies A, Bosker-van Zessen AI, Wagemakers CAM, van Kan JAL. 1997. Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Pl Dis 81:781–786.
  • Kim YK, Li D, Kolattukudy PE. 1998. Induction of Ca2+-calmudulin signaling by hard-surface contact primes Colletotrichum gloesporoides conidia to germinate and form appressoria. J Bacteriol 180:5144–5150.
  • Kuo KC, Hoch HC. 1996. Germination of Phyllosticta ampelicida pycnidiospores: prerequisite of adhesion to the substratum and the relation of substratum wettability. Fungal Genet Biol 20:18–29.
  • Lafon A, Seo JA, Han KH, Yu JH, d’Enfert C. 2005. The heterotrimeric G-protein GanB(a)-SfaD(b)-GpgA(g) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171:71–80.
  • Liu ZM, Kolattukudy PE. 1999. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporte grisea, is inhibited by self-inhibitors and requires surface attachment. J Bacteriol 181:3571–3577.
  • Lowry O, Rosebroug J, Farr A, Rabdall R. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275.
  • Ma Z, Michailides TJ. 2005. Genetic structure of Botrytis cinerea populations from different host plants in California. Pl Dis 89:1083–1089.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428.
  • Movahedi S, Heale JB. 1990. The roles of aspartic proteinases and endopectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different strains of Botrytis cinerea Pers ex. Fr. Physiol Mol Plant Pathol 36:303–324.
  • Moyano C, Gómez V, Melgarejo P. 2004. Resistance to pyrimethanil and other fungicides in Botrytis cinerea populations collected on vegetable crops in Spain. J Phytopathol 152:484–490.
  • Muñoz G, Hinrichsen P, Brygoo Y, Giraud T. 2002. Genetic characterization of Botrytis cinerea populations in Chile. Mycol Res 106:594–601.
  • Osherov N, May SG. 2000. Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155:647–656.
  • ———, ———. 2001. The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199:153–160.
  • Quidde T, Osbourn A, Tudzynski P. 1998. Detoxification of α-tomatine by Botrytis cinerea. Physiol Mol Plant Pathol 52:151–165.
  • Rowe HC, Kliebenstein DL. 2007. Elevated genetic variation within virulence-associated Botrytis cinerea polygalacturonase loci. Mol Plant Microbe Interact 20:1126–1137.
  • Schoonbeek H, del Sorbo G, de Waard MA. 2001. The ABC transporter BcatrB affects the sensibility of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant Microbe Interact 14:562–571.
  • ———, Raaijmakers JM, de Waard MA. 2002. Fungal ABC transporters and microbial interactions in natural environments. Mol Plant Microbe Interact 15:1165–1172.
  • Schouten A, Maksimova O, Cuesta-Arenas Y, van den Berg G, Raaijmakers JM. 2008. Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Env Microbiol 10:1145–1157.
  • Seong KY, Zhao X, Xu JR, Güldener U, Kistle HC. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45:389–399.
  • Solomon PS, Tan K, Oliver RP. 2003. The nutrient supply of pathogenic fungi: a fertile field for study. Mol Plant Pathol 4:203–210.
  • Thompson J, Latorre BA. 1999. Characterization of Botrytis cinerea from table grapes in Chile using RAPD-PCR. Pl Dis 83:1090–1094.
  • Tucker CL, Talbot NJ. 2001. Surface attachment and pre-penetration stage development by plan pathogenic fungi. Annu Rev Phytopathol 39:384–415.
  • Tudzynski P, Siewers V. 2004. Approaches to molecular genetics and genomics of Botrytis. In: Elad Y, Williamson B, Tudzynski P, Delen N, eds. Botrytis: biology, pathology and control. The Netherlands: Kluwer Academic Publishers. p 53–66.
  • Uhm KH, Ahn Il, Ahn Il, Kim S, Lee YH. 2003. Calcium/calmodulin-dependent signaling for prepenetration development in Colletotrichum gloeosporioides. Phytopathology 93:82–87.
  • van der Vlugt-Bergmans CJ, Brandwagt JW, Vantklooster CA, Wagemakers CA, van Kan JA. 1993. Genetic variation and segregation of DNA polymorphism in Botrytis cinerea. Mycol Res 97:1193–1200.
  • Voegele RT, Hahn M, Lohaus G, Link T, Heiser I, Mendgen K. 2005. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol 137:190–198.
  • Warwar V, Dickman M. 1996. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Appl Env Microbiol 62:74–79.
  • Wisniewski M, Droby S, Chalutz E, Eilam Y. 1995. Effects of Ca2+ and Mg2+ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Pl Pathol 44:1016–1024.
  • Witteveen CFB, Visser J. 1995. Polyol pools in Aspergillus niger. FEMS Microbiol Lett 134:57–62.
  • Xue Y, Battle M, Hirch JP. 1998. GPR1 encodes a putative G protein-couple receptor that associates with the Gpa2p Galpha subunit and functions in a Ras independent pathway. EMBO J 17:1996–2007.
  • Yang Z, Dickman MB. 1997. Regulation of cAMP and cAMP dependent protein kinase during conidial germination and appressorium formation in Colletotrichum trifolii. Physiol Mol Plant Pathol 50:117–127.
  • Yule D, Williams JA. 1992. U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem 267:13830–13835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.